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Preface

The purpose of this research is to develop an analytical model for
scheduling check-out servers at the commissary. The goal of the model is
to insure that the average customer waiting time remains constant
throughout the scheduling period. Such a model can save commissary
management much time and effort, and it can save money by improving
the utilization of the commissary workers. The model was developed to be
general enough to be used at any commissary in the Air Force, and it can
also be used at many other different service organizations.

1 want to extend my sincere thanks to my thesis advisor, Ma jor
Joseph Litko, for all of the help he gave me in the development of this )
thesis. Thanks also to my thesis reader, Dr. James Chrissis, who also
provided help along the way. The biggest thanks, however, go to my wife
Aneita and daughter Elizabeth, for being understanding when [ did not
give them the time that they deserved during the past 18 months.

Thomas J. Frey
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Abstract
\'4
The purpose of this researeh was to develop an analytical model that
would optimally schedule commissary checkers so that the expected

‘H\ U’c s

customer waiting-time would remain relatively constant throughout the
scheduling period. A two-phase model was developed to solve the
problem. The first phase of the model used dynamic programming to find
the optimal number of checkers required throughout each day to meet the
desired customer waiting-time goal. Since checkers cannot be scheduled to
work arbitrarily short tours of duty, a second phase was needed in the
model to fina the optimal number of checkers to assign to allowable shifts
in order to meet the optimal requirements determined in phase one.

A simulation was developed to validate the checker scheduling
model. It was found that the scheduling model produced acceptable resuits
until the last few periods of the day. Additional servers needed to be
added heuristically near the end of each day to obtain the desired customer
waiting times. /{j words: £ hackar f"«/\?o’.u./m;j PENY/ (kg )

Several extensions of this work are possible. First, an improved
approximation for customer line lengths could be used at the end of each
day. Use of such an approximation could eliminate the need for heuristic
rules in scheduling servers during the last few periods of each day.

Second, the scheduling algorithm that was developed did not account for
checker lunch breaks. Accounting for lunch breaks complicates the
problem, but two different approaches were suggested for a solution
allowing for checker lunch breaks. Finally, a third phase could be added to
the model that would allow assignment of actual workers to the optimal
shifts determined in the second phase.

vi




OPTIMAL SERVER SCHEDULING TO MAINTAIN
CONSTANT CUSTOMER WAITING TIMES

Background

Controlling customer waiting times at service organizations such as
the commissary is a difficult task. Long lines are a common cause of
customer complaints. At the commissary, long lines do not usually cause
customers to leave the store. However, they can result in loss of future
commissary sales by causing customers to do future grocery shopping at
off-base establishments. Long lines can also impair the efficiency of
commissary service by creating congestion in the aisles.

Long lines are not the only problem facing commissary management.
The other extreme, lines that are too short, is also a problem. From a
customer’s standpoint, short lines are ideal, but short lines cost the
commissary extra money. To attain short lines, the commissary must
employ extra check-out servers (checkers). Since each store is only
allocated a set number of checker-hours each month, a store may not have

the needed checker-hours available to achieve short lines. Somewhere,
between long and short lines, an ideal exists. Keeping the line length and
the corresponding customer waiting time at this ideal is difTicult, especially
in the face of limited total monthly checker—-hours.




The easiest and most common way to control a queue’s length is by
varying the number of servers. Obviously, with more servers, short~r
lines would be expected. Analytical expressions relating the number of
servers to the number of customers in line are commonly available as long
as certain assumptions are met. One of these assumptions is that the mean
customer arrival rate remain constant. Unfortunately, the mean customer
arrival rate at the commissary (and at many other service organizations)

varies throughout the day, making the scheduling of servers more difTicult.

Specific Problem
Current scheduling of commissary checkers requires a considerable

amount of the store management’s time. At the larger stores, the time
spent on scheduling is estimated between eight and fourteen hours per
week (Polk, 1888). Efficient allocation of servers depends mainly upon the
experience of the scheduler. A reliable and automated method for
scheduling the checkers would save management time and potentially save
money through improved efficiency.

Research Ob jective
The primary objective of this research is to develop an analytical

model that will optimalily schedule commissary checkers so that the
expected customer waiting time is constant thr oughout the day. Some
subob jectives associated with the primary objective are:

1. Make the model sufficiently general so that it can be
used at any Air Force commissary.

A

Specify a goal for the mean customer waiting time and
achieve that goal throughout the month.




3. Keep the total number of checker-hours scheduled
during the month below a given maximum number of
allowable checker-hours for the month.

4. Validate the analytical model using simulation.

5. Observe any trends in server requirements during a
month.

Scope

The monthly scheduling of checkers is a three phase problem. In
Phase [, checker requirements must be determined for the scheduling
period. That is, the ideal number of checkers required to achieve the mean
customer waiting {ime goal are found in Phase 1. Then, in Phase II, all
possible checker shifts are enumerated, and the optimal number of checkers
are assigned to each shift to meet the requirements calculated in Phase 1.
Finally, in Phase 111, actual checkers are matched to the optimal shifts.
This research effort concentrates on Phases | and II. Phase 111, which is
essentially an assignment problem, is left for future work.

Plan of the Report
Chapter | has introduced the problem. The background, specific

problem, research objective, and scope of the research were discussed. In
Chapter II, the literature pertaining to this problem is reviewed. Included
in the literature review are sections discussing dynamic programming with
resource constraints, fluid approximations to queues, manpower shift

scheduling, integer and network programming, and application of

lagrangian rejaxation to integer programming. Chapter 11l documents the
development of the checker scheduling algorithm. In Chapter IV, a




simulation is used to validate the checker scheduling algorithm. Finally,

the results, conclusions, and recommendations are made in Chapter V.




Qverview
There are six main areas addressed in the literature review. The

first section reviews dynamic programming under constraints. The second
section discusses a simple queuing approximation used to estimate customer
line lengths. In the third section, various shift scheduling methods are
discussed. The fourth section of the literature review shows how certain
integer programming problems can be transformed into network
programming problems and the fifth section outlines how these network
problems can be solved. The final section of the literature review discusses
the lagrangian relaxation technique for solving integer programming
problems that have a special structure.

Constrained Dynamic Programming

Dynamic programming is defined by Hillier and Lieberman as “... a
useful mathematical technique for making a sequence of interrelated
decisions. It provides a systematic procedure for determining the
combination of decisions that maximizes overall effectiveness (Hillier and
Lieberman, 1986:332).” If a problem can be easily split into stages then
dvnamic programming should be considered as a possible solution
technique. At each stage the system can be in one of a number of different
states. A decision is made at the present stage. The effect of this deciston
is to transform the system state at the present stage into a system state at
the next stage. The mechanics of this transformation are usually defined
by a transition equation. A recursive function f is used so that the
dectsions made at each stage are optimal. The d!fTiculty in applying




dynamic programming is in defining the recursive function f and the

transition equation, which together define how to move from one stage to

the next. Figure 1 shows a graphical representation of dynamic
programming.

TE O
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Figure 1 Graphical Representation of Dynamic Programming

One typical definition of the recursive function { at stage n is
(Denardo, 1882:162):

max{min) [Rf(n)+fn+1(j) ] for n<N

fall) = max&min) [R}(N)] for n=N

where

n = current stage




i = system state at current stage

J
N

system state at next stage

total number of stages in the problem

k = decision made at stage n
Rf(n) = some return function given decision k, state i, and stage n

Typically the return function is some cost function and the objective is
minimization. For this case RE(n) would represent the cost at stage n
of decision k, and fn+1(j) would represent the total cost of the remaining
stages. Thus the current decision directly affects costs at the current stage
and indirectly affects costs later by determining the next system state.

A dynamic programming problem can be solved by starting at the
final stage N and working backward. The recursive function f is

calculated for every possible state at stage N . To calculate { for a given
state i, R?(N) must be calculated for every possible decision k. The

recursive function f(i) is then equal to the minimum value of R}(N) if the
objective is minimization. Once fy has been calculated for all possible
states of stage N, a similar process is followed for stage N-1. However,
now the recursion function is calculated using the first part of Eq (1):

fx-1(0) = min [R‘{(N—1)+fNU)] 2)

One difficulty in calculating f for any stage n, where n=N, is
determining the state j at the next stage ( n+1 ). Recall, the state at the
next stage is calculated using the transition equation. Unfortunately, there
is no standard form for the transition equation. It is usually dependent
upon the specific problem.




To apply dynamic programming to a queuing system, the following
must be defined: the system stage (n), system state (i), the stage decision
(kn), the return function (R), the recursion equation (f), and the transition
equation. Generally, the system stage (n) is some specified time period, e.g.
n=1 corresponds to hour one, n=2 corresponds to hour two, and so on.
The system state in a queuing system is usually the number of customers in
line, and the stage decision is the number of servers to have open for the
stage. Definition of the return function is not so simple. One way is to use

a cost function (Magazine, 1971:178):

K(i)+(kn-kn-1)A+knC if kn>kn-1
R¥n) = (3)
K(1)+(kn-1-kn)B+knC if kn<kn-1

where

A = cost of opening a server

B = cost of closing a server
C = cost of operating an open server for one time period (stage)
K() = holding cost, i.e. cost incurred when 1 customers are

observed in the system

A, B, and C are usually fairly easy to determine. However, it is extremely
difficult to define the customer holding cost, K(i). This customer holding
cost is basically an attempt to put a dollar value on the number of
customers in line. The rationalization for this is that if the line is too long,
business will be lost. The holding cost is a measure of the amount of the
lost business. Obviously, any value used for K(i) can only be an estimate.

The computational difficulty in solving a dynamic programming
problem is strongly related to the number of possible states.




Unfortunately, the addition of a resource constraint (e g. a limit on the
total hours available to be scheduled) can dramatically increase the number

of possible states. The reason for this is the way that resource constraints
are typically handled. Usually, an extra state variable, corresponding to
the amount of resource remaining, is added (Denardo,1882:35). Recall the
prior example, where the system state was given as the number of
customers in line (i). When the resource constraint is added, the new
system state is now a combination of the number of customers in line (i)
and the amount of resource remaining (y). If the maximum number of
customers in line is | and the total available increments of resource is Y,
then the total possible number of states is now approximately (I xY) .
This increase in the computational difficulty of a dynamic programming
problem as the number of state variables is increased is known as the
“curse of dimensionality” (Bellman, 1957:ix).

To avoid the curse of dimensionality in resource allocation problems,
an alternative to dynamic programming is available. This algorithm is
called the “maximal marginal return® procedure (Larson and Casti,
1982:350). The maximal marginal return procedure starts with none of
the resource allocated. Each unit of the resource is then added so that it
maximizes the immediate marginal return (or for a minimization problem,
each unit of resource is added to minimize the immediate marginal return).
The procedure is complete when all units of the resource are allocated.
The algorithm is simple and is usually more efTicient than dynamic
programming. Unfortunately, a condition for its use is that the return
fanction at each stage is independent of the return functions at alil other

stages. This condition is often violated in a queueing problem, where the




state of the system (number of customers in line) depends upon the actions
taken at previous stages.

The Fluid Approximation for Oueyes (Kleinrock, 1976:56-62)
Analysis of queueing systems is complex because it invoives several

random variables; time between customer arrivals is a random variable,
and the time required to serve a customer is a random variable. This
research effort is an attempt to control queue length by varying the
number of servers to the queue. To do this, the effect of the number of
servers upon the queue length must be known.

Queues are generally classified by the distribution of customer
interarrival times, the distribution of service times, and the number of
servers for the queue. For some special distributions of customer
interarrival times and service times, the exact relationship between number
of servers and queue length can be derived. Probably the most well-
known is the case where the distribution of the customer interarrival times
is exponential and the distribution of the service times is exponential (the
famous M/M/s queue). For more general cases, when the distributions are
unknown or not well-behaved, approximations must be used to obtain a
relationship between the number servers and the queue length. The fluid
approximation is one such approximation.

In any queuing system, the number of customers is a discontinuous
function of time. This is because the number of customers can only change
in integral units—half a customer does not exist. The number of
customers in the system at time t can be given as:

N({) = A() - D(t) (4)




where
A(t) = Number of customer arrivals in (0, t)

D(t) = Number of customer departures in (0, t)

In Figure 2, the relationship between A(t), D(t), and N(t) is shown
graphically.

N(t)

Numbaer of Customers

Time (t)

(Kleinrock, 1976:57)

Figure 2 Number of Customers in System as a Function of
Arrivals and Departures

The fluid approximation to a queue takes advantage of the fact that
when a system is in a heavy traffic condition, the number of customers can
be represented as a continuous function of time instead of a discontinuous

function of time. This is accomplished by using the average number of -




customer arrivals and departures instead of the exact values, giving the

fluid approximation as:
Ne(t) = A@®) - D(t) (5)
where
A(t) = Mean number of customer arrivals in (0, t)

(e

Mean number of customer departures in (0, t)

If the customer arrival rate as a function of time is given as A(t) and the
service rate as a function of time is given as u(t), then:

A(t)

t
AN + Jx(y)dy (6)

D(t)

t
D) + Ju(v)dy ()

The fluid approximation is shown graphically in Figure 3.

There are several limitations of the fluid approximation that should
be noted. The primary assumption of the fluid approximation is that the
system is in heavy traffic. If the queue empties out and servers become
idle, the approximation will no longer be accurate. Problems can also arise
at the other extreme—a sudden large influx of customers. The fluid
approximation tends to underestimate queue length when the system
reaches saturation in a very short time (the typical situation during a rush
hour, where A(t) = pu(t) ).

Although the queue length may be underestimated for some
situations, the fluid approximation is still valid when A(t) > sp(t) . Most
attempts to schedule servers to queues use the steady-state resuits of

12




Number of Customers

Time (t)

Figure 3 Fluid Approximation to N(t)

the simple M/M/s model of a queue (customer interarrival times and
service times are distributed exponentially). One problem with this model
is that it is only valid when:

A .
= — < 1 (8)
P sp

which means that the arrival rate cannot exceed the overall service rate.
To overcome this limitation, the number of servers s must be chosen so
that Eq (8) is obeyed. This is the approach used by Segal (1874) and by
Kwan, Davis, and Greenwood (1988). However, there is a more
fundamental problem involved with using the steady-state M/M/s model.

13




If the customer arrival rate and the overall service rate are changing over
time, then the system never reaches steady-state (Kwan, Davis, and
Greenwood, 1988:267).

The fluid approximation is useful because it is essentially a
deterministic approximation to queue behavior. In other words, if one
knows A(t) and D(t), A(f) and D(t) , or A(t) and p(t), then Ni(t) »
N(t) can be determined. With most other approximations, all that can be
deduced is the probability distribution of N(t).

Shift Scheduling

The staff scheduling problem is basically a problem of scheduling a
limited resource—people—to meet a set of requirements at a minimum
cost. The general formulation of this problem is (Baker, 1876:157):

Min cx
stt. Ax 2 b 9)
x 2 0, integer

Xj = the number of workers for shift j

cj = the cost of assigning a worker to shift j

bj = the number of worker required during period i
A

= 8 0-1 matrix with elements a;j

ais = 1 if shift j works during period i
i = 10 if shift j does not work during period i

Problem (8) is a general integer programming problem and can thus be

difficult to solve. However, a special case of the above problem is the cyclic

scheduling problem, where each column of A consists of consecutive ones




and zeroes. Such a case might occur when scheduling a 5-day work week

where the days off must be consecutive. For this case, A would be given

as:

(10)

QO =
O et - O
_——t - OO
N — X = 1
— et —— (D (D e —a
— et (D D s s -
- D () - et ot o

The consecutive ones in the A-matrix of Eq (10), sometimes referred to as
circular ones (Bartholdi, 1981:503), indicate that a worker is available
continuously during all consecutive time periods. If this assumption is met,
algorithms are available to solve the problem more efficiently than general
integer programming (Bartholdi, 1981:503).

Segal considers the case where work periods are considered to be
hours in the day instead of days in the week (Segal, 1974). For this case
the A-matrix will be linear instead of cyclic. That is, all ones in a column
of A will be adjacent (the top and bottom rows of A are not considered
adjacent). In Eq (11), an example of such a matrix is shown for eight and
five~hour work shifts.

To solve the problem given in (9), with A as in Eq (11), Segal
converts the problem into a network as shown in Figure 8 (Segal,

1974:812-815). In Segal’s network formulation, the nodes correspond to




)
J

(11)

DO — ettt s e O
O e et e e = OO
-t et et e . = O OO
COOOOOE — = s =
OO0 —= — = —
OO ————moO0
QOO = ——m—OOoO
0O~ = —==000O
N = ey _ Y W — W~
O~ —_-00O0O0O0 OO
_—— e D OO0 OO

DO = vt ottt b et e

!
L

the transition from one time period to the next. The forward arcs from i

to i+1 correspond to the actual time periods. The backward arcs from m

tol (1<m) represent the possible shifts. The arc parameters can he
defined as follows:

Forward Arcs:

Uji+t = upper capacity of arc = the maximum number of workers
allowed at one time plus an estimate of the number of workers
on break

Lijj»1 = lower capacity of arc = bj

Ciyi+t = 0

Backward Arcs:

Um,] = upper capacity of arc = the maximum number of workers

available to work this shift
Lm, = lower capacity of arc = the minimum number of workers to

Cm,l

be assigned to work this shift
the unit cost of this shift




This problem can be solved efficiently using a network flow algorithm. If
the worker requirements (by) are all integers, then the solution is
guaranteed to be integer.

1900

1800

1700 m

1600

1500

1400 1+1 (6)

1300 i

1200 1-1 (4)

1100

1000

0900 |

Figure 4 Segal’s Network Conversion

All of the scheduling algorithms discussed thus far assume that each

requirement by gives the minimum number of workers needed during

17




period i. This is why the constraints in (9) are given as inequalities. If
the requirements are actually ideal numbers of workers required during
each period, then the constraints in (8) should be changed to equalities.
However, if this were the only change made, then the problem will often
turn out to be infeasible. Therefore, an integer goal programming
formulation should be used (Koelling and Bailey, 1884:302):

Min V = Vi, Vg, .., W&

n
st. 2ayxy+d -d =b , i=1.,m (12)
J=1

Xj 20, J=1..,n

where
V = some achievement function to be specified
ajj = as defined above

Xj = as defined above

bi = as defined above
= number of workers below requirement for time period i

- [ 2B |

number of workers above requirement for time period i

Again, as long as the b;j are all integers and provided V s linear, the
solution to (10) is guaranteed to be integer. Baker gives an almost identical
formulation (Baker, 1876:181). The only real difference is that Baker
defines the objective function specifically as:

m n n
Minimize z cj Xj + z aj d: + Z Bi d; (13)
j=1 i=1 j=1

18




Network Programming (Veinott and Wagner, 1862:520)
It was no coincidence that Segal was able to convert problem (8) into

a network problem. As early as 1862, Veinott and Wagner showed that
any problem such as (8), where each row of the A matrix consists of
consecutive zeroes, followed by consecutive ones, followed by consecutive
zeroes, could be converted into an equivalent network problem. Suppose
that A ism x n. Each constraint except the first is replaced by itself
minus the previous constraint. The first constraint is left intact. An
additional constraint, equal to the last constraint times -1, is added. This
method is illustrated by the following example (adapted from Veinott and
Wagner, 1862:520):

X1
1111000000 X2 b
0111111000 . - b (14)
0011011110 . b3
0001001011 .
- X110~

After performing the transformation, one obtains:

- -

1 1 1 1 00000 0] :1 -y
1000111000 2 bp-by
0-t 6 0-1 00 1 1 O = | b3-b2 (15)
6 0-1 0 0-1 0-1 0 1 by—-bs
| 00 01 0 01 01t ] ~by

The equations of (15) have the required structure to be represented as a
network. Each column of A contains a single one, a single minus one,
and all remaining entries are zero, and thus A can be thought of as the

node-arc incidence matrix of a network.

19




The Out-of—Kilter Algorithm (Fulkerson, 1861:18-27)
An efTicient algorithm for solving problems of the form:

Min ¢cx
sstt Ax = b (18)
0sxsu

where A is a node-arc incidence matrix of a network, is the out-of-kilter
algorithm. The out-of-kilter algorithm is better than the simplex
algorithm for problems of this form because it eliminates the need to carry
the basis inverse and can thus reduce the computational burden of solving
the problem.

The dual of problem (18) can be written:

Max b - up
stt. RA-p s cC (17)
R 20
By defining:
F(j) = “From” Node = the originating node of arc j

T() “To” Node = the destination node of arc j

< = RFQ T ATQ) " O
the Kuhn—-Tucker conditions for optimality can be reduced to:
Ax = b (18)

€j<0 whenx;=0
for arc j: y €j=GwhenOsxjsu; (19)
¢j>0 whenxj=u;




For a given ( x, % ), arc j is said to be in-kilter if (19) is satisfied.
Otherwise, arc j is said to be out-of-kilter. If an arc is out-of-kilter, the
kilter number is the amount of flow required to convert the arc to the in-
kilter condition. For ( x, X ) to be a solution to (16), the kilter number for
each arc must be zero (all arcs must be in-kilter).

The out-of-kilter algorithm consists of two phases. In the primal
phase, all dual variables are held fixed, and the primal variables are
changed in an attempt to reduce the sum of all kilter numbers. In the dual
phase, the process is reversed. The primal variables are held fixed, and
the dual variables are changed in an attempt to reduce the sum of all kilter

numbers.

Lagrangian Relaxation (Fisher, 1961:1-8)
Many difficult integer programming problems can be viewed as easy

problems complicated by a relatively small number of side constraints.

Such a problem can be written as:

Z = Min cx
s.t. AX = )b (zo)
Dx = e
x 2 0, integral

where Ax = b are the difficult constraints. The Lagrangian relaxation is

formed as follows:

Z4(u) = Min cx + u(Ax - b)
st. Dx = e (21)
X 2 0, integral

21
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where u = (ug, uz, ..., uy) isa vector of Lagrange multipliers. For (20)
and (21), the following inequality will always hold:

Zafu) < cx*+u (Ax*-b) = 2 (22)

In general, it is not possible to find Z4(u) = 2. However, if Z4(u) = 2,
then by (22), x* is optimal.

Obviously, for a fixed u, (21) is easy to solve. Ideally, u should
be found so that Zq(u) = Z. The best choice of u is the solution to the

problem:

24 = max Z4(u) (23)

If Zg(u) were differentiable at all points, u could be found by setting the
gradient of Zq(u) equal to 0. Unfortunately, Zq(u) is not differentiable at
all points, so this will not work here. An adaptation of the gradient
method, known as the subgradient method, has become a popular approach
to selecting u . In this method, a sequence { uk} is generated starting at

ul = 0 and using:
uktl = gk + ty(Axk - b) (24)

where xk is an optimal solution to (21) at the previous iteration and ty

is a positive step size. A common equation for the step size is:
M [2#-2q(ub) ]
tk = m[n ] 2
ZL 1ainj"—bi}

(25)

i=1l j=

22 -




where Ax is a scalar between 0 and 2. An empirical rule for Ax is to set
Ao =2 and set Ax = (Ax-1/2) if Z4q(u) has failed to increase in a specified
number of iterations. It should be noted that while Eq (25) has worked
often in practice, there is no guarantee that it will always force

convergence to the optimal solution.

sSummary

This chapter presented a review of literature for six areas relevant
to this research. First, dynamic programming with resource constraints
was discussed. Second, the fluid approximation for obtaining an estimate
of queue length was reviewed. The third area of interest in the literature
review were previous efforts at shift scheduling. The fourth part of the
review showed how certain integer programming problems could be
converted into network problems, and the fifth part briefly discussed an
efficient algorithm for solving these network problems. The sixth and final
section of the literature review discussed Lagrangian relaxation, a method
for removing or relaxing certain constraints that change an otherwise

easily solved problem into a more difficult problem.




11l The Checker Scheduling Algorithm

Qverview

The scheduling of servers at a service organization is a three phase
problem. In Phase I, the server requirements for each time period must be
determined so that the desired customer waiting time is obtained. Then in
Phase I, the optimal number of worker's to schedule to each possible shift
must be found so that the server requirements determined in Phase | are
met. Finally, in Phase Il1l, actual workers are assigned to the shifts in the
numbers calculated in Phase II.

The Phase I problem is solved here using dynamic programming.
The output of the Phase I dynamic program becomes the input to Phase II.
Because of the special structure of the constraints on the possible worker
shifts, the Phase II problem can be solved using a network flow algorithm.
The Phase III problem was not addressed here. One approach to the Phase
I11 problem might be to view it as an assignment problem, where workers
are assigned to the shifts calculated in Phase II.

The solution to the Phase I and Phase Il problems were implemented
using Turbo Pascal. The resulting code, named the Server Scheduler, is
given in Appendix A.

Bhase [

The purpose of Phase I is to determine the checker requirements
throughout the month to obtain a mean customer waiting time of five
minutes. The total checker hours must be less than a pre-set number of
hours. Customer arrivals to the queue have been tabulated throughout Air

Force commissaries at one-hour intervals. Because of the time-staged
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nature of the arrival data, a dynamic programming approach is suggested
for determining the checker requirements throughout the month. The
dynamic programming approach assumes that the customer arrival rate
and the service rate can be treated deterministically (the validity of this
assumption is discussed in Chapter IV). It has been shown that the service
time for a customer is given by (Moulder, 1987:105):

service time = 1.48 + 0.05 y (28) K

where Yy is a random variable having a gamma distribution with
parameters « = 3.2 and P = 23.1. The mean value of y is 73.92, so the -
mean service time is 5.156 minutes. The corresponding service rate p is
0.194 customers per minute.
The natural stages in this problem are each hourly interval (n). It -
was not possible to formulate a return function in such a way that the
return functions at each stage would be independent, and so the faster
maXximal marginal return method could not be used. If, however,
conventional dynamic programming causes the maximum total checker
hours to be exceeded, then a variant of the marginal return method will be
used to deallocate checkers. As in most queueing problems, the state
variable is chosen as the number of customers in line (Ly). The decision
variable is the number of checkers (kn) to have open during period n. As
mentioned in Chapter 11, it is usually difficult to formulate a good return
function for a queueing problem. This is not the case here. Because the
Air Force Commissary Service has requested that the mean customer

waiting time be kept at five minutes throughout the day, the return
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function can be defined as the deviation of the waiting time from five

minutes, i.e.
Rn = IWn"s | (27)

where Wp is the mean customer waiting time during period n. The

mean customer waiting time can be defined as:

n - —Ll‘z-;il'fl (28)
where
Ln = number of customers in line at stage n
Ln+t = number of customers in line at stage n+1
B = mean servicerate
kn = number of checkers at stage n

In Eq (27), [(La + Ln+1) / 2] gives the average number of customers in the
one—hour interval while pkn gives the overall service rate of all checkers
combined. The number of customers in line at stage n+1 is related to the

number of customers in line at stage n by:

ot = {lo "ot 0= e st
where all variables are as defined above, and Ap is the number of
customer arrivals during the one-hour interval (which has been tabulated).
Eq (29} is a fluid approximation to the behavior of the queue, with arrivals
A(t) = Ap and departures D(t) = 60pkp . The case of Lp+ = O is used
to force the queue to empty at the end of each day and start empty for the
following day. For this to occur, the departures in the last period of the
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day must exceed the total number of leftover customers plus the number of
arrivals in the last period, i.e. 60pkn+1 2 Ly + Ap+1 . Thus the normal

flow of a dynamic program as shown in Figure 1 is modified as shown in
Figure 5.

The only other formula needed to complete the dynamic
programming formulation is the backward recursion formula. It is as

given in Eq (1), where the objective is minimization:

ﬁkl:ln [Rn+ fn+ ] for n<N

fn‘

- :ﬂn [Rn] for neN (30)

The dynamic programming formulation of the Phase I problem can

be summarized as follows:
V. ble

n = each one-hour interval

State Variable

Ln = number of customers in line

kn = number of checkers open
Iransition Equation

Loyt = {Ln + Aq - 60)tky if n = final hour of day

n+ 0 if n = final hour of day
and 60|lkn 2 Ln»l + An
Return Function ,
+ 2Ln+An-60
Rp = |Wp-5] = Lﬂ_L.Qﬂ_sl,an n Fkﬂ_s

2pkn

2ptkn
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Recursion Formula

min [Rn+fn+1 ] for n<N

_lk
fn = T;n[RN] for n=N

The Phase | dynamic programming technique is implemented in the
Server Scheduler in the procedure “Phasel.” This procedure in turn makes
calls to procedures to calculate Lp+1 (fcalc_num_cust®), Wp
(*waiting time®), and Rp (“Return®).

The output of Phase I is a the vector k containing the checker
requirements needed throughout the month to achieve a five minute
waiting time. If the total checker hours exceed the maximum total hours,
i.e.

N

2 kn > Max Total Hours (31)

n=1
then checkers must be removed until the total checker hours are equal to
the maximum total hours. A variation of the maximal marginal return
method is used to determine the stage from which to remove a checker.
Checkers are removed, one at a time, from the stage that produces the least
gain in the overall sum of the return functions. In the Server Scheduler,

checker removal via the marginal return method is accomplished in the
procedure “Deallocate.”

2 !







Phase {1

Once the checker requirements are calculated in Phase |, the optimal
shift schedules can be determined. Because of the number of possible shifts,
it is best to solve Phase Il for each day separately and then combine the
daily shift schedules into an overall monthly schedule. It is assumed that

possible shift lengths are 4, 5, 6, 7, or 8 hours long.
The Phase 11 problem is formulated as in equations (12) and (13):

Min 1d*+ 1d-

st. Ax+d -d* = Db (32)
x 2 0, integer
d~ 2 0, integer
d* 2> 0, integer

where all variables are as defined in Chapter II. A sample constraint
matrix for problem (32) is given in Eq (33). For simplicity, the sample

constraint matrix shows only shift lengths of 4 and 8 hours.

o1}
b2
{looomoooooo 1-1000000000 00000000000 \ bs
110011000000 001-100600000 00000000000
111011100000 00001-100000 00000000000 be
111111110000 0000001-100000000000000 X bs
111101111000 000000001-10000000000060
111100111100 00000000001 -10000000000 d-{ = | bg |(33)
111100011110 00000000000 01-100000000 &+ by
111100001111 00000000000 0001-1000000
011100000111 00000000000 000001-10000 bg
001100000011 00000000000 00000001-100
Kooonooooooonooooooooooo 0000000001-! ) bg
b1p
\b11/

Using the method of Veinott and Wagner (1982) as outlined in Chapter II,

the constraints are transformed into a network node-arc incidence matrix.
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The constraints are illustrated in Eq (34), and the corresponding network

is shown in Figure 6.
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Since the network problem given in Eq (34) and Figure B is equivalent to
the problem given in Eq (33), the solution to the network problem is the
solution to the original integer goal programming problem. But the
solution to the network problem can be found much more quickly than the
solution to the integer programming problem. More importantly, since the
elements of b are all integer, the solution to (32) is guaranteed to be
integral if the constraints are as in Eqs (33) and (34). In the Server
Scheduler, the out-of-kilter algorithm is used to solve the equivalent
network programs. The procedure used is called “MinCostFlow,” and is
based on the implementation of the out—of-Kkilter algorithm given in
Kennington and Helgason (1980:76-68).




(-bt11]

{br1-b10]

{b10-691]

(69-b8]

[b8-57]

[b7-b6])

1b6-bS)

{bS-b4]

1b4-b3]

b3-b2)

{b2-b1)

Ibi1]

Figure 8 Equivalent Network




|7 NI SO O AW S R

Lunch Breaks
Because a special network flow algorithm can be used to solve it, the
Phase II procedure outlined above is very efficient. However, this

formulation has not made provision for workers to take lunch breaks.
Assuming that a worker on any shift longer than six hours is entitled to a
one-hour lunch break, the sample constraint matrix shown in Eq (33) must

be modified as shown in Eq (35):

MY

bl
) (32 )
b3
be
X b5
b6 | (35)
d+ b?
b8
b9

/ \ot1/

This new constraint matrix is no longer amenable to the network
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transformation, and the solution to the problem is no longer guaranteed to
be integral. Therefore, to solve this problem one must resort to more
difficult general integer programming techniques. For a typical day, when
five-, six-, and seven-hour shifts are added, the problem given in (35)
would have 50 to 60 integer variables that range from 0 to 30. Each
individual variable would need five 0-1 variables (29=32). This gives a
total of 250 to 300 variables in a 0-1 integer programming formulation
(too large to solve on a microcomputer).

Several alternate formulations are available that can help avoid the
problems associated the formulation of (35). The first alternate

formulation adds additional constraints for every hour corresponding to a




shift lunch hour. These constraints are then dualized to form a

Lagrangian relaxation to the original problem. The Lagrangian relaxation
retains the consecutive ones in the constraint matrix, thus guaranteeing an
all-integer solution. The second alternate formulation splits each eight-
hour shift into two four-hour shifts, each seven—hour shift into a four and
a three hour shift, and each six-hour shift into two three hour shifts.

This formulation also retains the consecutive ones in the constraint matrix,
and the solution is again guaranteed to be all-integer.

Lagrangian Relaxation Formulation. In this formulation, as in the
formulation of (35), the length of a shift with a lunch hour is increased by
one hour. An eight-hour shift is changed into a nine-hour shift, a seven-
hour shift is increased into an eight-hour shift, and a six-hour shift
becomes a seven-hour shift. Unlike the formulation of (35), the added hour
in a shift is not a zero in the constraint matrix. The new formulation is

given in (36):

Min 1d-+ 1d* (36)
(22
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The constraint matrix of (38) is not complete. If the only the
constraints of (36) were used, the number of checkers during the fifth,
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sixth, and seventh hours would be overestimated by x1, x2, and x3
respectively. The reason for this is that the checkers assigned to these

shifts are actually out-to-lunch during these hours. This is best illustrated
by example. During the fifth hour, the constraints of (36) indicate that the
number of checkers on duty is:

X] + X2+ X3+ X5 + Xg + X7 + Xg (37)

Since checkers from the first shift are out to lunch, the actual number of

checkers on duty is:
X2+ X3+ X5+ Xg + X7 + Xg (38)

In other words, requirement bg will be undershot by x1 . To off-set the
overestimation of checkers, extra constraints are added to force extra
checkers to be scheduled during lunch hours. For the example given
above, the extra constraint is of the form:

dg = %1 or dg-x =0 (30)
The effect of the added constraint is to force x1 extra checkers to be
scheduled during the fifth hour. These extra checkers exactly offset the
shortage created by the checkers that are out to lunch. The complete

formulation for the sample problem is given in (40):
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(40)
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The extra lunch-hour constraints in (40) destroy the consecutive ones

property that aliowed the problem to be converted into a network (and

insured an integer solution). To regain the consecutive ones property, the

lunch-hour constraints are dualized and a Lagrangian relaxation is

formed:
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Theoretically, the problem formulated in (41) should be solvable by
the method outlined in Chapter 2. First, the multipliers are set at u0 =
(0,0,0) , and the resulting problem can be solved using the network flow
algorithms already outlined. Then the muiltipliers are updated using Egs
(24) and (25) and the process is repeated until a solution is found that
satisfies the extra lunch break constraints (tx = 0 in Eq (25) ).
Unfortunately, implementation of the Lagrangian relaxation method for
this problem proved to be difficult. Apparently, this is one application for
which Eq (25) failed to produce convergence to the optimal solution.
Lagrangian relaxation is still a promising method for solving the shift
scheduling problem with additional constraints (including but not limited to
lunch break constraints). However, a different policy must be found to
update the multipliers, since Eq (25) has proven to be ineffective for this

application.

Split-Shift Formulation. Another promising way to account for

lunch breaks is to break each shift requiring a lunch break into two shifts.

For example, an eight-hour shift extending from 0900 to 1800 with a lunch




break at 1300 would become two four-hour shifts, the first extending from
0800 to 1300 and the second from 1400 to 1800. Similarly, seven-hour
shifts are split into a four and a three—hour shift, and six-hour shifts
become two three~hour shifts. Using this formulation, the final constraint

matrix consists of five, four, and three~hour shifts:

11
Min | 2 (d;+d)) (42)
i=1
(bl
\ 62
10000001 00000001 000000001-100000000000000000000 b3
11000001 1000000110000000001-100000000060600000000 b4
11100001110000011100000000001-10600000000000000
1111000111100000111000000000001-100000000000000 X b5
t11110001111000001110000000000001-1000000000000 d- | = | v6
01111100011110000011100000000000001-10000000000 d- b7
0011111000111100000111000000000000001-100000000 b8
000111100001111000001110000000000000001-1000000
00001110000011100000011100000000000000001-10000 b9
0000011000000 100000001 100000006000000000001-1 00 bi0
\00000010000000100000000100000000000000000000 1-1 / \bl 1/

The split-shift formulation is not without complications. First,
solution of the problem given in (42) gives optimal numbers of five-, four-,
and three-hours shifts. Some way must be found to convert these shifts
back into eight-, seven-, six~, five-, and four-hour shifts. Since this
conversion could be done by hand if need be, this is not a serious limitation.
But a serious limitation does exist. If three-hour shifts are not aliowable,
one must ensure that all three-hour shifts in the optimal solution can be
converted into six, seven, and eight-hour shifts. There are at least two
possible ways to ensure this. The first way maintains the network

structure but does not guarantee that a solution could be found, while the
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second guarantees a solution but requires a Lagrangian relaxation problem
to be solved.

The first method for ensuring the conversion of three—hour shifts is
similar to branch-and-bound methods for solving integer programs. The
problem of (42) is first solved as given using the network algorithm (as
before). If all three-hour shifts can be converted into six-, seven-, and
eight-hour shifts, the problem is solved. If, however, there are M3 extra
three-hour shifts that can not be converted from shift xpy , then an upper
bound of x3 -~ M3 is placed on X3, and the problem is solved again. The
process is continued until a feasible solution is obtained.

The second method for ensuring that the three-hour shifts can be
converted consists of adding extra constraints. For each three~hour shift,
all other shifts that could combine with the three-hour shift to form a
six-, seven-, or eight-hour shift are enumerated. The sum of the checkers
assigned to these other shifts must exceed the number of checkers assigned
to work the three-hour shifts. For the problem of (42), this means that
the following constraints must be added:

X168 S X12 + X20 (43)
X17 S X13 + X21 (44)
X18 < X14 + X22 (45)
X1g < X15 + X23 (48)
X20 S X16 + X24 (47)
X21 < X8+ X17 (48)
X22 < X9+ X18 (49)

X23 < X0 + X19 (50)




X24 < X1 + X2p (51)

These extra constraints again destroy the network structure of the
problem. To regain that structure, one can again apply a Lagrangian
relaxation, with the same complications experienced in the original
Lagrangian relaxation formulation. Of course, if three hour shifts are
allowable, then the formulation given in (42) can be used, and the optimal
solution would be obtained.

Summary
The Server Scheduler Program implements a two-phase algorithm

for scheduling servers at a service organization (specifically, checkers at
U.S. Air Force commissaries). In Phase I of the algorithm, dynamic
programming is used to find the number of servers required during each
scheduling period to obtain a target customer waiting time. A fluid
approximation to queue length is used to calculate the average customer
waiting time during each period. Then, in Phase II of the algorithm, the
optimal number of servers to schedule to each possible shift is found so
that the requirements determined in Phase I are met. Integer
programming was used to implement Phase Il of the scheduling algorithm.
Because of the special structure of the constraints in the Phase Il integer
program, network techniques could be used to solve Phase Il efTiciently.
Scheduling of checker lunch breaks is a difficult extension to the
Phase II shift scheduling problem. A brute force approach, simply adding
zeroes to the corresponding row of each shift, destroys the structure of the
problem. With this approach, applying linear programming to the problem

is not guaranteed to produce an integer solution, so more difficuit and
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time-consuming integer programming methods must be used. Use of
Lagrangian relaxation regains the special structure that allows efTicient
network techniques to be used iteratively to solve the problem. However,
commonly used multiplier update formulas do not work for this problem,
so more research is needed to determine if a Lagrangian relaxation
technique can be successfully applied here. Finally, a split-shift
formulation was explored. In this formulation, each shift with a lunch
break was split into two shifts. Again, the special network structure was
regained that would allow this formulation to be solved efficiently. If
three—hour shifts are allowable, this formulation works. However, if
three-hour shifts are not allowed, then Lagrangian relaxation techniques
must be used to solve this formulatijon.




Overview
This chapter is concerned with the validity of the Phase I part of the

Server Scheduler model, i.e. the determination of the optimal checker
requirements. Two different types of model validation are discussed here.
First, face validity of the model is briefly explored. That is, does the model
and its output seem to make sense? After face validity is checked, a
simula‘ion is used to see if the model achieves its goals—specifically the
achievement of the desired mean customer waiting time. The simulation
can also be used to investigate the general behavior of the system under
some typical conditions.

The data used to test the model was tabulated for three weeks in
May and June of 1987 at the Lackland AFB Commissary. [t consisted of
hourly counts of the number of customers arriving to the queue and the
number of customers currently in the queue. This data is given in

Appendix B.

Face Validity

Using the three weeks of data given in Appendix B for customer
arrivals, Phase I of the Server Scheduler was run to determine the optimal
checker requirements. In Figure 16, the checker requirements kn and the
arrivals Ap are plotted against n for a typical day. As would be
expected, when the number of customer arrivals increases, more checkers
are required. Also, when the number of customer arrivals in a period is

very large, extra checkers are scheduled in the preceding periods in an
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attempt to prepare for the surge. So from a simple face validity

standpoint, the output of the Server Scheduler is consistont and sensible.
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Simulation of the System

To truly test the performance of the Server Scheduler, simulations
were constructed for two typical days from the three-week period. The
days chosen were 6 Jun 87 and 11 Jun 87. Four different simulations
were run for each day, each using different assumptions. A summary of

the assumptions for each of the five simulations follows:

1. All parameters were assumed to be deterministic.
Customers were assumed to arrive at a constant rate
throughout each hour, and the service time for each
customer was assumed to be 5. 156 minutes.

2. Customer interarrival times are distributed
exponentially with a known mean. Service times are
also randomly distributed, with the distribution given by
Eq (29).

Qo

Customer interarrival times are distributed
exponentially, but now the mean interarrival time is a
random variable with a normal distribution. The mean
of the mean interarrival time is known, and the
standard deviation of the mean interarrival time is 5% of
the mean. Service time distributions are still given by
Eq (24).

4. Same as case 3, but now the standard deviation of the
mean interarrival time is 10% of the mean.

The simulations were run using SLAM on a DEC VAX-8650 running
under the VMS operating system. The SLAM model is shown in Figure 8,
and the SLAM code and output for each of the 8 runs is given in Appendix
C. The customer waiting time during each period was averaged across 50

runs of each simulation. A plot of this average is given in
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AP

Figures 11 to 18 for each simulation, along with the expected results
according to the fluid approximation used in the Server Scheduler (Figures
9 and 10).

Comparison of the simulation results against the expected results
according to the fluid approximation of the Server Scheduler shows that
for some cases, the Server Scheduler is fairly accurate, and for other cases,
the Server Scheduler is very inaccurate. Specifically, the Server Scheduler
produces good results early in the day. However, toward the end of each
day, the customer waiting time in the simulations exhibited a marked
increase. Two approximations were made in the Server Scheduler that
might have caused this problem. They were the approximations used to
calculate the number of customers at the end of each period and to calculate

the mean customer waiting time for each period.

Average Cust omer Walting Time

Y
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Figure 8 Fluid Approximation for Entire Scheduling Period
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The approximation for the mean custorner waiting time of each
period is given by Eq (28):

_ Lnt Lo+

Wo = ok

(28)
To test the accuracy of this approximation, the Case 2 simulation for 11
Jun 87 was repeated, and the number of customers at the end of each
period was averaged across 50 simulation runs. This allows a comparison
between the mean customer waiting times of each period and the
approximation of Eq (28) using actual simulation values for Ln and Lp+1.
This comparison is made in Figure 19, and the approximation appears to

be fairly accurate.
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Figure 13 Comparison of Approximation and
Actual Customer Waiting Times
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The approximation for number of customers in line at the end of

each period is given by Eq (29):

Ln+An-60pkq if n=finalhourof day

Lov = { 0 ifn=finalhourof day (29)

The values of Lp from the last simulation are compared to the expected
values of Lp given by the approximation of Eq (28) in Figure 20. Notice
that near the end of the day the approximation for Lp becomes
inaccurate. This is the probable cause of the long waiting times observed

at the end of each day in the simulations.
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To correct for the end of the day underestimation of line lengths
show in Figure 20, an additional checker can be added at period 10. The

effect of the additional checker, shown in Figure 21, is dramatic. The

mean customer waiting time is reduced to acceptable levels.
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Y. Results, Recomnmendations, and Conclusions

Summary of Resulls
The primary objective of this research was to develop an analytical

model that could be used to optimally schedule commissary checkers so that
the expected customer waiting time remains relatively constant throughout
the day. Such a model was developed and proved valid for most of the
day. There were slight problems with the model at the end of each day,
but these could be corrected by heuristically adding a server when the
customer waiting time begins to increase. Since commissary managers
typically have a number of discretionary employees available for temporary
surges, this model could work in practice.

A subobjective was to make the model sufficiently general to be used
in any Air Force commissary. The model developed is actually general
enough to be used in any service organization where the customer arrival
pattern is known. It allows the user to specify a mean customer waiting
time goal, the second subobjective of the research. The deallocation
procedure ensures that the third subobjective, to keep the total checker-
hours below a maximum allowable number, is met.

The checker scheduling model was validated using simulation. The
simulation showed that the model worked for most of the scheduling
period. However, as mentioned previously, the model did tend to produce

overly optimistic estimates of mean customer waiting times late in the day.

Recommendations
The Server Scheduler program could be a valuable tool for
scheduling commissary checkers. The program is overly optimistic toward




the end of each day, but this problem can be corrected if only a single

discretionary employee is available for one scheduling period near the end
of the day. To eliminate the need for discretionary employees, a difTerent
approximation could be investigated that can successfully predict customer
line lengths as they approach zero.

The Server Scheduler program implements two phases of a three
phase problem. Although all objectives of the research were met, there are
two obvious extensions of this work. The first is to solve the third phase
of the problem, which is the assignment of actual people to specific shifts.
The second is to improve the Phase I part of the algorithm (where the
number of checkers to assign to each shift is determined). Currently, the
Server Scheduler does not take lunch breaks into account. Several possible
techniques for accomplishing this were outlined in Chapter 111, along with
limitations of these techniques.

Conclusjons

The Server Scheduler provides a reliable and automated method for
scheduling commissary checkers. The method can save management time,
and it can save the commissary money through improved utilization of
checkers. The method is sufficiently versatile to be used in any commissary

in the Air Force.
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Appendix A: Server Scheduler

progran Server._Scheduler;

{

Phase | of this program calculates the optimal nusber of
checkers neaded throughout the day (msonth) in order to achieve
o five minute customer waiting time.

Phase (| of this prograa then detarmines the optimal mmber of
chackers to assign to each shift in order to meet the Phasa |
chacker requirements.

)

uses PasPrinter;

(e AR A A A o )

const
MAXSTAGES = 372; { max ® stages in a month }
MW = 0.19393; { average service rate }
MIN = 5, 156; { average service time }
TN = 60.0; { tima in one stage }
MAX_CHECKERS = 30; { maxisum rumber of open checkers }
MIN.CHECKERS = {; { minisum nueber of open checkers )
LMRX = 100; ~ { maximum nueber of customers in line }
INFINITY = 3. 4E38; { biggest allowed real rumber = infinity }
INT_INFINITY = 2000000000; { bigoest aliowed integer = infinity }
Maxfires = 255; { saximum 8 arcs allowed in NinCostFlow procedure )

Maxdiodes = 254; { maxisum ® nodes aliowed in MinCostFiow procedure }

type

intArray! = arrayl0. .LMAX] of integer;
Realfrray! = arrayl0. .LMAX] of real;
IntArray2 = arrayli. .MAXSTRGES] of intager;
DayOfdeek = (Monday, Tuasday, Hednesday, Thursday, Friday, Saturday, Sunday);
Hours = record

open :@ integer;

close : integer;

ond;
date = record

month : 1..12;

day @ 1..31;

year : 1980..2100;

end;
Arcfirray = arrayl!. .Maxfircs) of integer;
Nodefirray = arrayl!. .MaxNodes) of integer;

var
n : intager; { stoge variable }
hour : integer; { each hourly interval in a day }
MY : integer; { total ® stages in g month }
TotaiStages : integer; { aiso total ® stages in a aonth }
TotalHours : integer; { total ® checker hours allocated }
MaxHours : longint; { maxisum ® checker hours to be allocated }
k : IntArray2; { number of checkers open in stage n }
d : orrayi!. MAXSTAGES] of *IntArrayt; { optimal decision table }

f : orray(1. MAXSTAGES] of “Reaifrrayl; { forward recursion values }
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L : integer; { rumber of customsers in lina }
next.L : integer; { rumber of customers in )ine at next stage }
A : IntArray?; { vmber of arrivals in stoge n )
® : real; { customer waiting tise }
target : real; { desired customer waiting tine }
tespt : integer; { tesporary variable }
tenp2 : real; { teaporary variable }
t-pa real; { temporary variable }
: ml { return function value }
,j mtoonr { integer loop control variablies }
dtp:intogu-; { nusber of customer departures in stage n }
time : arraylDayOfileek] of hours; { daily hours of the store }
CurrentOay : DayOftieek; { current day of the week }
FirstDay : DoyOflleek; { 15t doy of scheduling period }
LastDay : DayOflleek; { last day of scheduling period }
choice : integer; ( used in manu to select portion of prograa to run }
done : boolean; { terminates the program }
FirstData : date; { 1st date of scheduling period }
LastDate : date; { last date of schedu!ing period )
CurrentDate : date; { current date in schedul ing period }
ExceadHours : boolean; { talis if Maxdiours was exceeded }
(= }
function calcrua_cust (last.mm cust,arrivals, nua_servers
( integer; interval,service_rate : real) : integer;
This function calculates tha number of customers in line at
the and of the naxt stage given:
lastrum_cust = ® customers at the beginning of the stage
arrivals = § customers arriving during the stage
ma_servers = 8 servers open during the stage
service_rate = sean service rate of all open servers
; intarval = jength of time in the stage
var
tesp : integer; { store ® customers to check if it is nonnegative }
begin
temp := jast_nua_cust + arrivals - trunc(interval*servicerate*na_servers);
if temp ¢ O then
calc.nm cust := 0
eise
calcum.cust = temp;
end;

function saiting_tine (nua_cust, next_rmm_cust,ms_servers :

( integer; service_tine : real) : real;
This function calcuiates tha mean customer waiting tise in time
period n given:

mm_cust = rnumber of customers in |ine at the beginning of

time period n
naxt.nua_cust = nusber of customers in line at the end of

. , #
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tima period n
ma_sarvers = nusber of servers open during time period n
service_tine = neon service tise of ali servers

}
begin
waiting_time := (nua_cust + nextnum_cust) * 0.5 * service_tine / num.servers;

’

{ > oojusieaiesfesieaioniooieafsaiuaprofssiesieronprsierfenfess . }

?nctlon Return (Hoit,desired.wait : real) : real;
This function is the return function of the dynomic prograsming

formulation:
Rin] = | Haitin) ~ desiredmait |
where:
Hait = the mean customer waiting tise
) desired_mait = desired customar waiting time
begin
Raturn := Abs(lait -~ desired.mait);

end;

{

qrmdun Deal jocate;

{f the dynamic programaing algoritha results in an optimal
allocation of checkers which is above tha limit on total
hours, this procedure is used to remove checkers from stages
so that the change in the return function is minimized.

}
var
stoge : integer;
best_pliace : integer; { best stage to remove a server }
z : real; { current best vaiue of objective function }
new.z : real; { value of objective function to be tested }
begin
whiie (TotalHours * MaxHours) do
begin
z = INFINITY;
for n ;= 1 to NN do { find bast place to remove a server }
begin
if kin) > HINCHECKERS then
begin

kinl := kin] - 1; { reduce nuaber of sarvers at stage n }
{ Calculate the new return }

CurrentDay := FirstDay;

hour := time(CurrentDoyl.open;

ne_2 =0
L :=s0;
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for stage := 1 to NN do
bagin
if ¢hour = (timalCurrentDayl.closa ~ int(TN/80.0%100>)> then
naxtl = 0
else

naxtl = colcum cust(L,Alstagel, kistage], TN, MU);
o = waiting_tinedL, naxt_L kistogel MUINY);
R := Raturnie, TARGET);
new.z := new.z + R;

lf&ow = (tina({CurrentDoyl.close ~ int(TN/60.0%100))) then
in
if CurrentDay = Sunday then
CurrentDay := Monday
else
CurrentDay := suce(CurrentDay);
hour := tiselCurrentDay).open;
end
alse
hour :s hour + int(TN/60.0*100);
end; { for stoga := 1 to NN }

{ {f the new return is better, resesber it }
if new_z < 2z then
bagin
Z = new.z;
best_place := n;
end; { iIfnewz <2}
kin] = kinl + 1; { restore number of servers at stage n }
end; { if kin) > MIN.CHECKERS }
end; { forn := 1 to NN }
{ Ramove server at tha best place }
kibast_piace] := kibest_piacel - 1;
end; { while (TotalHours > MaxHours) }

end; { procedure Deallocate }

{ L sl mpmmmm)
procedure Fil IDPTable;
var -
ch : chor;
begin
CleorScrean;

writein('Starting to fill DP state-stage table');

CurrentDay = LastDay;
if tima{CurrentDoyl.open = tiselCurrentDay).close then
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begin
if Currentbay = Honday then
'Ctrmmw := Sunday
else
o CurrentDay = pred(CurrentDay);

hour := tise({CurrentDayl.close; { Begin with last stage }
n = NN;
writainC'n = ' NN);
for L := 0 to LMAX do
begin
temp2 := 100000.0;
if (CTN * MU * MAX_CHECKERS> < L) then
begin
teapi := MAX_CHECKERS,
® = waiting_time(L,0, MAX_CHECKERS, MUINV);
A := Return(w, target);
temp2 := R;
end { if (CTN * MU * MAX_CHECKERS) < L) }
eise
begin
for j := MIN.CHECKERS to MAX_CHECKERS do
in
if (CTHN* MU * )= (L + AINNI) then
begin
v = waiting_tinelL,0,j,MIINV);
R := Raturn(e, target);
if R < temp2 then
begin
temp2 := R;
tempt := j;
end; ( ifR < temp2 }
end; { if CCTN = MU * j) >= (L+AINN])) )
end; { ) := MIN.CHECKERS to MAX_CHECKERS }
end; { eise }
dINN]*IL) := tespl,;
fINNI“IL] := temp2;
end; { for L :=2 0 to LMAX }
hour := hour = INt(TN/60.0*100);

for n := NN-1 downto 1 do
begin
witein('n = ' nj;
if Chour = time{CurrentDayl.open) then
bagin
tamp2 := 100000.0;
for j := MIN_CHECKERS to MAX_CHECKERS do
begin
next.L := calc.nm_cust<0,Alnl,j, TN, M,
if nextL < LMAX then
bagin
v ;= waiting_tine(0,nextL, |, MUINV};
R := Raturn(w, target);
if (Refin+1)"[next_L]) < temp2 then
begin
temp2 := R+fint1]*Inaxt.L);
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tempt := j;

and;
ond; { if nextL < LMAX then }
end; { j := MINCHECKERS to MAX_CHECKERS }
din)* lOl = templ;
fin]*[0] := temp2;
and { if hour = time(CurrentDay).open }
else
begin
if howr = (time(CurrentDayl.close)) then
bagin
for L := 0 to LMAX do
begin
temp2 := 100000.0;
if (CTN * MU * MAX_CHECKERS) < (L + Aln1)) then
begin
temp! = MAX_CHECKERS;
next.L := eulc.n.n.wst(L Alnl, MAX_CHECKERS, TN, MU);
w = waiting_timedL, nexu. mx.u-ecxsns mnm
B := Return(e, target);
temp2 := R + fin+1)°(0];
end { if (CTN * MJ * MAX_CHECKERS) < (L + Alnl)) }
eise
bagin
for j := MIN_CHECKERS to MAX_CHECKERS do
begin
if (KTN*M* j)o= (L + AInl)>) then
bagin
w = waiting_timedL,0,j,MUINV)};
R := Raturn(w, target);
if (R + fIn+11°10)) < temp2) then
begin
temp2 (= R + fine11°10],;
templ = j;
end; { if R+ fIn+1)°10) < temp2 }
md; {iftIN=*j)oral))
{ j := MIN.CHECKERS to MAX_CHECKERS }
end; (ol }

din)* ILJ = tupl,
finl“ (Ll = tenp2;
end; ( for L ;=0 to LMRX }
end
eise { normal hour of the day }
begin
for L ;= 0 to LMRAX do
begin
temp2 := 100000.0;
for j := MIN_.CHECKERS to MAX_CHECKERS do
begin
nextL := cale_rumcust(L,RInl,j,TN,MJD;
if mxt_L < LMAX then
begin
w = waiting_timelL, naxt L, j MIIN);
R := Raturn(w, target);
if (Refin+1]*[nextl]) < temp2 then
begin
temp2 := R+fIm+1]1" [next_L];
temp! = j;
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end; { If (Refint11*(naxt.L])) < temp2 }
end; { if nextl < LMAX }

end; { j := MIN.CHECKERS to MAX_CHECKERS }
dinl*IL] := tempi;
fin)*(L] :» temp2;

end; {L := 0 to LMAX }

end; { elise }
end; { aisa}

if (hour = timaiCurrentDayl.open) then
begin
If CurrentDay = Monday then
lemwag 1= Sunday
eise
CurrentDay = Pred(CurrentDay);
If tine(CurrentDoy).open = timelCurrentDayl.close then

in
If CurrentDoy = Monday then
CurrentDay := Sunday
eise
CurrentDay := Pred(CurrentDay)’;
end;
hour := tiselCurrentDayl.closes;
end { if Chour = timelCurrentDoyl.open) }
elise
hour := hour = int(TN/60.0%100);
end; { n := NN-1 downto 1}
end; { procedure FillDPTable }
{
procedurs ForwardPass;
var

¢h : char;
bagin

writain('Starting forward pass in DP');

L :=0;
CurrentDay := FirstDay;
if time(CurrentDayl.open = timelCurrentDayl.close then

in
if CurrantOay = Sunday then
lemtDw := Monday
elise
CurrentDay = succ(CurrentDay);
end;
hour := time{CurrentDay).open;

TotalHours := O;

forn ;= 1 to NN do
begin
witein('n = ',n);
kinl := din)*(L);
TotalHours := TotalHours + kinl;
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if ¢hour = (timelCurrentDoyl.close)) then
nextl = 0
alse
naxt.lL = calc.rnm custl,Rin], kinl, TN, M),
L := naxt.l;
if ¢howr = timelCurrentDayl.closa) then
begin
i1 CCurrentDay = Sunday? then
CurrentDay := Monday
aise
CurrentDay := Succ(CurrentDay);

if tima{CurrentDayl.open = tiselCurrentDayl.close then

i
b.?fnmm a Sunday then
elise o =
CurrentDay := succ(CurrentDay);

end;
hour := timeiCurrentDayl.open;
end { if Chour = timaiCurrentDay).close) }
else
hour := hour + int(TN/60.0*100);
end; {n:=1 toMN)
end; { procedure ForwardPass }

¢

procedure GetArrivals(vor MmStages: integer; var arrivals: intArroy2);

var
InputFile : text;
n : integer;
in
reset(inputFile, ‘Arrivals.dat’);
n:=0;
while not SeekEof(IinputFile) do
begin
n:=n+t;
if not SeakEoin(inputFile) then
read(inputFile,arrivalsinl)
elsa
begin
recdin;
reod{ inputfile,arrivaisinld
end;
end;
Close(IinputFilia);
NuaStages := n;
end;

{
Qrocadwo Ini tHours ;
This procedure sets dafault store hours as:
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Doy Open Close

Honday 0000 0000

Tuasday 0900 2000

Hednesday 0900 1900

0900 2100

Friday 0900 1900

Saturday 0800 1600

} Sunday 0000 1700

var
day : DoyOfileek;

begin

timaltiondayl.open := 0000;

tina(Mtondayl.close = 0000;
tinelTuasdayl.open := 0900;
tima[Tuesdoyl.close := 2000;

time[Thursdayl.close := 2100;
tinaiFridayl.open := 0900,
tima(Fridayl.close := 1900;
timelSaturdayl.open = 0800;
timalSaturday).close := 1800;
tima(Sundayl.open := 0900;
tisa{Sundayl.close := 1700;
end; { procedure InitHours i

{
Toccdlre Ini tPointers(nuaber_of_stages : integer);

This procedure initializes the pointers for dynamic mesory
) allocation.
begin
for n := 1 to number_of_stoges do
begin
New(dinl)>;
New(f(nl);
end;
end;

{mtmsitceikion

;Emcodwc InitTarget;

This procedure sats the dafault customer waiting time goal
to 3.0 minutes.
}
bagin
torget := 3.0;
end; { procedure InitTarget }

(o - . -)
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procedure in! thaxHours;

{
This procedure sats the default maxisum ol lowable checker hours

) to infinity.
begin

NaxHours .= INTLINFINITY;
end; { procadure Inithadours )

{
procedure Menu(var sajection : integer);

begin
ClearScreen;
GotoXv(23, 10);
write('1. Fun Phase |');
BotoXv(23, 11>,
writa(’'2. Aun Phase (I°);
BGotoXv(23, 12);
wite('3. Run Phasa | & Phase [1');
BotoXY(23, 13);
write('4. Sat Heekiy Store Operating Hours');
GotoXy(23, 14);
orjte(’'S. Set Desired Customer Waiting Time');
GotoX¥(23, 13);
writa('6. Set Limit on Total Checker Hours');
GotoXY(23, 18);
orite(’'7. Quit');
BGotoX¥(23, 19);
write('Enter Selection:');
readin(selection);
ClearScreen;
end;

{
;rocodr' ReadDate(var FirstDate, LastDate : date);

This procedure asks the user for the first and last day to
be scheduled and converts the input into the proper date format.

}
var
FirstDay, LastDay : string(10];
BadResponse : boolean;
begin
CleorScreen;
repeat
BadResponsae := false;
GotoXv< 12, 12);

writa('Entar first day of scheduling period (mm/dd/ygny): '),
readin(FirstDay)>;
i Cord(FirstDayl1)) > 49) or C(ord(FirstDayl1)) < 48) then
= true;
if Cord(FirstDayl{21) > 57> or (ord(FirstDayl2}) ¢ 48) then
BadResponse = true;




ik L eil e s

PR U SR

if (FirstDayli) = '1'> and (ord(FirstDayf2]) > 50) then
= true;
if Cord(FirstDayl41) > 51) or (ord(FirstDayl4]) < 48) then
BadResponss = true;
if (ord(Fin\leSl) > 57) or (ord(FirstDayl3]) < 48) then

BadResponsa := true;

if (ord(Flrstle?l) > 30) or (ord(FirstDayli?]1) ¢« 49) then
BadRasponse := true;

24 (ord(Flrstlem> 37) or (ord(FirstDaylB8l> < 48> then

BadResponse
if Cord(FirstDayi9l) » 37> or (ord(FirstDaylf9)) ¢ 48) then
SadResponse :® trua;
if (ord(FlrstDwHOl) > 57) or (ord(FirstDay(101) < 48) then
BadResponse .= true;
if (Firstowwl <:n" Y or (FirstDayl6] <> */*) then
.
if Bodhsponu then
bagin
ClearScreen;
GotoXy(12, 10);

orjte(’ Incorrect format or out of possible range, try again.');

end
eise

in
GotoXy(12, 10);
ClearElL; -
end;

until nét BadResponse;
repaat

BadResponse = false;
GotoX¥(12, 13);
write( 'Enter last day of scheduling period (sa/dd/ypgyd:‘);
readin(LastDay);

if Cord{LastDayl1]> > 49) or (ord{LastDayli)) ¢ 48) then

BadResponsa := true;

if Cord(LastDayl2]> > 37) or <ordiLastOoyi2)) < 48) then
BadResponse = true;

if (LastDayl1] = "1')> and (ord(LastDayf2]}> > 30> then
BadResponse = true;

if <ord(l.ost0w!4l) » 31) or Cord(LastDayl41) ¢ 48> then
BadResponse := truae;

if (ord(Laleag(Sl) > §7) or C(ord(LastDayiS}> < 48) then
BadResponss = true;

if (ord(Lasthl?l) » 30) or (ord(LastDayl(7]) < 48) then
BadResponse = trua;

if Cord{LastDayl81) > 37) or (ord(LastDay(81) < 48) then
BadResponsa = true;

if Cord(LastDoy(9]) > §7) or (ord(LastBayi{g1) < 48) then
BadResponse = true;

if Cord(LastDayi101)> > 57) or (ord(LastDoyl10)> ¢ 48) then

BadResponse := true;
if CLastDayl3] <> '/*) or (LastDayl8] <> '/') then
BadResponse := true;
i BadResponse then
begin
GotoXv(61, 13);
ClearEOL;
BotoXY(12, 10);
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orita(’ incorrect format or out of possible range, try again.’');
end
eisa
in
GotoXv(12, 10>;
ClearelL ;
ond;
unti| not BadResponse;

{ Corvart date from string format to ‘date’ format Cinteger) }

FirstOate.month := 10 * (ord(FirstDayl11) - 48) + (ord(FirstDayl2)) ~ 48);
FirstData.day := 10 * Cord(FirstDayl4l) - 48) + (ord(FirstDayl(Si> - 48);
FirstDate.yeor = 1000 * (ord(FirstDayf{7]) - 48) + 100 * (ord(FirstDay(8]) ~

48>
+ 10 * Cord(FirstDoyif)) - 48) + (ord(FirstDayl101) - 48);
LastDate.month := 10 * (ord(LastDayl1]) - 48) + (ord(LastDayl2]) - 48);
LastDate.day := 10 * C(ord{LastDay(4]) - 48) + (ord(LastDay(5]) - 48);
LastDate.year := 1000 * (ord(LastDay(?1)> - 48) + 100 * (ord{LastOay(8]) - 48>
+ 10 * (ord(LastDay(9]) ~ 48) + (ord(LastDay(101> - 48);

end; { procedure ReadDate }

(S ki }
function Julian(SomeDate : date) : integer;

( This function takes a date in 'standard’ date format and

, corverts it to Julion format ¢ Yyyy ond ddd )

var .
temp : integer;

bagin
case SOuDato sonth of

1 : temp := SomeDate.day;
2 : temp := SomeDate.day + 31;
3 : temp := SomeDate.day + 59,
4 : temp := SomeDate.day + 90;
3 : tesp := SomeDats.doy + 120;
6 : temp := SomeDate.day + 15};
? : temp := SomeDate.day + 1681;
8 : temp := SomeDate.day + 212;
9 : temp := SomaDate.day + 243;
10 : temp := SomeDate.doy + 273;
11 : temp := SomeDate.day + 304,
12 : temp := SomeDate.day + 334;

end; { case SomeDate.month of }

if ((SomeDate.yeor mod 4) = 0) then
tanp = temp + §;

Julian := tesp;

end; { function Julian }

{

?nction DaysBetween(FirstDate,LastDate : date) : integer;




This function caiculates tha mmber of doys batwesn two dates.

var
i : intager;
Firstdulian, LastJulion : integer;
temp : integer;

begin
Firstdulion :s Julion(FirstDate);
LastJul ion := Julion({LastDate);
temp = Lastdulion - FirstJulion;
for i := FirstDate.year to LastData.year-1 do
if ¢i mod 4> = 0 then
temp := temp + 360
alise

{ }
;}rocodnrc SetDate(var StartDay,EndDay : DoayOfllesk; var NumStages : integer);
This procedure asks the user for the first and last day to
ba schaduled. (i then calculates tha total nuaber of stages
(hours) in the schaduling period and the doy of the week for the
y first and last days.
var
NunDays, tenp : integer;
Raf : date;
Oayfirray : arrayl0. .61 of DoyOfileek;
today : DayOfileek;
begin
Ref.month := 1; { Raference date is Friday, 1| Jonuory 1988 }
Ref.day := 1,

Ref.year := 1968,
Dayfrrayl0] := Friday;
Dayfrray( 1] := Saturday;
Doyfrroyf2] := Sunday;

Dayfrrayl3] := Monday;
Ooyfrray(4] := Tussday;
Doyfrray(S] := Uednesday;
DoyArrayi8) = Thursday;

AReadDatec(F irstDate,LastDate);

{ Datermine tha doy of the week for the first day to ba scheduled }
MumDays := DoysSetweencRef,FirstDate);
temp = NumDays mod 7;
StortDay := Doyfrroyltespl;

{ Datermine the day of the week for the last day to ba scheduled }

NumDays := DoysBetwean{Ref,LastDate);
temp = NumDays mod ?;
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EndDay := DayArrayltempl,;

MumbDays = DoysBatwean(FirstDate,LastDate);
today .= StartDoy;
NmStages := 0;
for temp := 0 to Nusbays do
in

if (timmltodoyl.open <> time(todayl.cliose) then
fmsStages = NuaStages + timeltodoyl.close - timeltodayl.open +
int<TN/60.0*100);
if today = Sunday then
today := Monday
eisa
today := Succ(today);
end;
NusStages := NusStages div 100;
it ™ < 60 then
NumStages = NuaStages * round(80/TN);

end; { procedure SetDate }

(nmmmmmm}

procedure MinCostF |low(NumNodes, . inteager;
¢ : Arcfirray;
var x : Arcfrroy;
F : ArcArray;
T : Arcfirray;
b : Nodefirray;
u : Arcfirray);

This procedure soives tha Hinisum Cost Flow problem:

Min e'x
s.t. fAx=DH
D$xsu

where

x = vactor of arc flows

¢ = vactor of arc fiow costs

b = vector of node supply or desands

u = vector of arc flow upper bounds

i = node arc incidence matrix

NuaNodes = nuaber of nodes in tha network (max is 254)
Nusfres = number of arcs in the network (max is 2535 - Numiodes)

Notice that the node arc incidence matrix was not one of the
input paromssters. (nstead, the arrays F & T are used, shere:
F = “From” function of on arc, i.e. FIxCi, j)] = |
T = “To" function of an are, i.e. TIx(i,j>] = j
Notice that F & T require much [ess mesory than A.

The following constants sust be dafined before the procedure
is called:

Maxfircs = 253;

Haxiiodes = 254;

Tha following types sust be defined bafore the procedure
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{

is called:
Arcfirray = arroyl 1. .Maxfircs] of integer;
Nodefirray = arrayli..Maxdiodes) of integer;

For added speed, al! variables and poraseters are defined as
integers. |f noninteger values are needed, sinply redefine
the varicbles and paramaters as reais.

The out of kilter aigorithe is usad to soclve the probles.

Reference: Rigorithas for Network Programming, by Jeff L.
Kernington & Richard V. Halgason. John Hiley
& Sons, Mew York, 1960.

const

inf = 9990;

type
SlackNodeSat = sat of 1..MaxNodes;

SlackArcSet = set of 1..Haxfircs;

var
pi : Nodefirray; { dual variables }
cost : fArcfirray; { costljl = pilFlj11 ~ pilTLj1} =~ cljl }
theta : integer { amount to chonge dual variables }
psil . set of 1..MoxfArcs; { condidata sat for tree }
psi2 : set of 1..MaxArcs; { candidate set for tree )}
Nhat : sat of 1. .lMaxNodes; { current nodes in tree )
Ahat : set of 1. .MaxfArcs; { current arcs in tree }
delta : Nodefirroy; { amt to change flows in cycle }
i . intager; { loop control variable }
J ! Integer; { toop control variable )}
s : integer; { out of kilter arc }
need_arc : boolean; { indicates whether an out of kilter arc is known }
inkilter : boolean; { indicates whether a!l arcs are in kilter }
no_cyclie : boolean; { indicates whather a cycle exists }
NmSlackArcs : integer; { total ® of arcs after slack arcs are added }
NusSlackNodes : integer; { total ® of nodes after slack node is added }
{ . }
p{roctdrc Initial Solution;
This procedure finds on initial feasible solution to start
the algorithm.

The initial solution it found by use of the "all-artificial
start.” An extra node, Mumhodest+i, s added to the network.
For each source node i with supply blil, a slack are is
addad from i to MumNodas+1 with cisiaock arc) = O,

ulsiack arc] = infinity, and xistack arcl = bli]).

For each demand node k with demond (b(kl|, a sliack arc is
odded from MumNodes+1 to k with clslack arc) = infinity,
ulslack arc] = infinity, and xIslack arc] = |blk]}.




N : set of 1. NHmdiodes;
NU : set of 1..MaxiNodes;
found : booleon;

J : integer;

i : integer;

bagin
for j := { to Numfircs do
begin
xijl] = 0;
oend;
for | := 1 to Nuatodes do
in
if blil > 0 then
begin
x(i+umfircs] := blil;
cli+humfircs] = Q;
ulivhumfrces] = inf;
Tli+Numfircs) = NusNodes + 1;
Fli+humArcs) = §;
end; { ifDLI1> 0}
If bli] <= 0 then
begin
x[i+husfircs] := -blil;
cli+humircs) = inf,
ulithmfrcs) = inf;
Tli+humArcs] = j;
Fli+Humfrcs] = NumNodes + t;
end; { ifblil <=0}
end; { for i := 1 to NuaNodes }

for i := 1 to NumSlackNodas do { fill pilil for aii nodes }
pilil := 0;

for j := 1 to NumSlackfres do { compute costlj] for all arcs }
costljl := pilFLj1] - pilT(j)) - elj]);

end; { procedure Initial_Solution )}

procedure ArcSearch(var inkilter : boolean; var es : integer);

{
This procadure searchs for an out of kilter arc in the network.
{f all network arcs are in kilter, then the flag inkilter is
sat to true. Otherwise, tha first out of kilter arc found is
returned in es, and the flag inkilter is sat to faise.

This procedure assumas that all parometers are avaiiable, ie
, eljl, xtjl, piln), & costlj) = pilFlj)) - pilTI[j)} - elj]
begin
inkilter = true;
Jj =0
repect
=)+t
if Ccostljl < 0> and {x(j] > 0) then
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inkiftar := faise;
if (costij) » 00 and (x1]) < utjl) then
inXkilter := false;
- until <(not inkilter) or (j = NumSlackfAres),
if (not inkilter) then

es = j;
end; { procedure ArcSearch )}
{ ettt dioupinattpioksohob bk ootk o }
;{ocodurc primai(es : integar; var nocycle.flag : boolean);

This procadure executes the prisal phase of the out
of kilter algorithm with arc es. (f the algoritha
terainates with the conclusion that no cycle eaxists,
no_cycle.flag is sat to true. Otherwise,

) nocycle_flag is set to faise.

var
found : booleon;
j,i : integer;
tree_path : Archrray;
na_pathoares : integer;
current.node : integer;

procedure findpath(k,| : integer; N : SiackNodeSet;
A : SlackfArcSet;
var path : Archrroy;
var naLin_path . integer);

{
This procedure finds the path thru the tree N
from node k to node | (assumes that there is
only a singie path in N from k to |)>. The path
is returned in the array path and the mumber of
y arcs in the path is returned in nm_in_path.
var

next_node : arrayil. .MaxNodes] of integer;
found_nodes : SlackNodeSat;

i,j, current_node : integer;

found : boolean;

begin
next_nodell] := |; { start at | ~ there's no next noda }
found.nodes := [ | I;
repaat
for j := | to NumSlackfrcs do
begin
if ¢ in A) then
begin
If (TLj) in found.nodes) and
(not(Flj] in found_nodes)) then
begin
found_nodes := found_nodes + ( FIj] ];
next_nodel[Flj)) := T{j};
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end;
if (Flj1 in found_nodes) and
(not(T(j] in found_nodes)) then
begin
found_nodes := found_nodes + [ TLj] 1;
next_nodel(T(j1! := Flj);
end;
end; { if CTLj] in N)> and CFLj) in N) }
end; { for ) := 1 to MumSiackfircs }
until <k in found.nodes);
rma_in_path := O;
current_node = k;
repaat
j =0
found = faise;
while not found do
begin
jomj+y;
if ((j inAR ) and (FIj] = next.nodelcurrent_nodel>
and (T(j] = current.node)) then
begin
mm_inpath := nua_in.path + 1;
found := true;
pathinm_in path] := j;
current_node := F(]1;
end;
if (¢ in A) and (Flj) = current_node) and
(Tlj] = next_nodelcurrent_nodel?)) then
bagin
nm_in_path := nua_in_path + 1;
found := tryue;
pathinm_in_pathl := j;
curren = T(j],
end;
end; { while not found )
until current.noda = |;
end; ( procedure find_path }

begin
Ahat := []); {0. Initialize }
if costias) < 0 then
begin
Nhat = [ Tlex] I,
del talTies)) := xles];
end { if costies) < 0}
eise { costles}! >= 0}
begin
Nhat := [ Fles] 1;
daltalFlas]) := ules) - xles];
end; { alse }

repeat
psit ;= [); { 1. Datermina Candidotes for Tree }
psi2 := [];
for | := | to MumSiackAres do
bagin
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if ({j<>es) and (costl)] >= 0) and (xIj) < ulj]> and
(T{j] in Nhat) and (notCFlj] in Nhat))) then
psil :=psit + [ j 1,
if ((J<>es) and (costlj] <= 0) and (x[j] *> 0) and
Fljl in Nhat) ond (not(TI[j] in Nhat))) then
psi2 = psi2+ { j 1,
end; { for j := | to NumSiackfres }
if (Cpsi1 + psi2) = [1) then
begin
nocyclie_flag := true;
exit;
end { if Cpsil + psi2) = (1))
alse
nocyclie_flag := false;

j = 0; { 2. Append New Arc to Tree }
found := false,
repeat
jomj+
if (j inpsil) then
in
if (deltalTljl) < Culj) - x{j1)) then
daltalFljl] := daitalTlj))
eise
daitalFIj1] := Culjl - x{j1?;
found .= true;
end;
if ¢(j in psi2) then
in
If (daltalF{j)) < x[j1> then
deitalT{jl] := deltalFIlj])]
alse
deltalTlj1] := x(j];
found := true;
end;
until found;
Nhat = Nhat + [ T{j1,FLj1 I;
fhat = Ahat + [ j 1;
until (Fles) in Nhat) and (Tles] in Mhat);

if (costies] < 0) then { 3. Breokthrough }
in
find_path(Tles], Fles], Nhat,Ahat, tree_path,num_path_arcs);
current_node := Tles]);
for j = { to num_path_ares do
in
if (Titreapathljl] = current_node) then
begin
xltree_pathljl] := xitree_pathlj]) + deltalFles)];
current_node := Fltree_pathijl];
end
else { Fltrea_pathljl] = current._node }
begin
x{tree_pathljl] := x{trea_pathlj)] -~ deltalFlesl];
curren = T(trea_pathijl};
end;
end; { for j := | to nua_path_arcs }
xlzg] = xles] - daltalFlesl);
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end
eise { costles] >= 0}
bagin
current.node := Fles);
find_path(Fles], Tles], Nhat,fhat, tree_path, nm_path_arcs);
for j = | to num_path_orcs do
begin
if (Tltrea_pathijl] = current.node) then
begin
x[trea_path(jl] := x[tree_path(jI] + deltai{F{esl];
current.node := Fltree_pathljll};

end
aisa { Fltrea_pathi{jl] = current_node }

begin
xitree_pathlj)] := x[treepathljl] - deltalFlesl];
curren 1= Tltree_pathljl];

end;
end; { for j := 1 to num_path_arcs }
xlas) := x(es) + deltalTles]];
end;

end; { procedure primal }

p{rocedwe dual(es : integer; vor need_orc_flag : booiean),
This procedure ispliements the dual phase of the out of
kKilter aigorithm on the ires developad in tha primal
phase ond sats the flag need.orc_flag. (f arc es is in
kitter at the end of the dual phase, a new out of kilter
arc sust ba found, so need_arc_flag is set to true. |If
arc es is still out of kilter at the end of the dual phasa,
than the primal phase must be executed again, and the

) need_arc_flag is set to false.

var
i,j : integer;

in
t{ngt«rt with T = (Nhat,fhat) } { 0. Initialization }
{ developed in primal phase }

psit = [); { 1. Dateraina Arcs incidant on T }
psi2 := [1;
for j = 1 to NumS{ackfires do
begin
17 (costlj) < 0> and (notCFI)] in Mhat)) and
(TLj1 in Nhat) then
psit = psit + { j },
i1 (costi)) > 0> and (F1}) in Mhat) and
(not(Tij] in Nhat)d) then
psiZ2 ;= pgi2 + 1 j };
end; { for j := { to NumSlackfAres }

theta := inf; { 2. Determine Maxinum Permissablie Change }
for j := 1 to NumSlackAres do

76




¢y

if (j in(psit + psi2)) and (Abs(costi(j]) ¢ thata) then
theta := Rbs(costl(j!);

for i := 1 to MumS)ackNodes do { 3. Reduce Duals }
if {1l in Nhat > then
pilil := pili] - thata;

for j := 1 to MumSlackArcs do { Update Costs }
costlj] := pilFLj1l - pilTLjI11 - elj1;

need_arc_flog := true; { Sat need_arc.flag }
if (costles] < 0) and (xles] > 0> then

nead_arc_flag := faise;
If (costies] > 0) and (xles) ¢ ules)) then

need_arc.flag := falsa;

end; { procedure dual }

{

begin
HusSlackNodes := MumNodes + 1
NmSlackfircs = Nusfircs + Mumliodes;

Initial Solution; { Find an initial sat of feasibla flows }
need_arc = true; { Do not currently know an out of kilter arc )}
repeat
if need_arc then { Find an out of kilter arc s }
begin

frcSaarch(inkilter,s); { If no out of kilter arcs,
inkilter = true }

end,
if.not inkilter then
begin
primal{s,no_cycle); { Execute the primal phase with arc s }
need_arc = true;
if (nocycie) then
bagin
dual(s,need_are); { 1f primal phase finds no cycles,
execute dua! phase )}
end;
end; { if not inkilter )
until inkilter;
end; { procedure MinCostflow }

{
;(roccdr.Ptmal;

This procedure perforas the Phase | portion of the problem, i.e.
determination of the checker requirements.

Tha checker requirsments are returned in the giobal vector k and
are output to tha file Servers.out.
}

var
OutputFile : text;
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bagin
SetDote(FirstDay,LastDay, TotalStages); { Asks for period to schedule }

GatArrivais(NN,R); { Pfead arrival data into A, ® stages into NN )
if (NN <> TotalStages) thean ( if NN <> TotaiStages, somathing wrong }
begin
ClearScreen;
GotoX¥( 13, 12);
wr | te( 'Number of stages in Arrivals.Dat does not match number’);
GotoXV(1S, 13);
write 'of stages from first to last day of scheduling period.’);
GotoXY(13, 13);
write(’ Strike return to continue.’);

SotoX¥(2%, 17);
writeC’NN = ° ,NN);
GotoXV(2S, 18);
write('TotalStages = °,TotalStages);
readin;
Exit;
end;

Ini tPointers(NN); { Initialize pointers }
FiliDPTable; { Calculates f & d for the entire DP state-stage table }
ForwardPass; { Finds optimal path thru DP state-stage table )}
if TotalHours > Hmddours then
bagin
ExceedHours .= true;
Oeal iocate;
end
tise
Exceadours := false;
Mih(mtthilc,'Sst.out'); { Opan output file }
Furstoag of { Urite FirstDay to output file }
Mondoy : writeln(OutputFile, 'Monday');
Tuasday wltcln(OutputFllc,'Tutsdag ),
Hechosdau : writeln{OutputFila, m&u y;
Tfursday : writeln(OutputFile, 'Thursday');
Friday : witcln(mtputFilo,'Fmdau)
Satwdw rut.ln(OutputFllo, Satu'dau );

Sunday : witoln(mtputl-'ilc, Sunday’ );
end; { case FirstDay )}

for n := 1 to NN do { Write optimal 8 checkers to 'Servers.out' )
writein{OutputFile,kinl);
Close(QutputFile); { Closa output file )}

end; { procedure Phasal }

{

?rocme Phasel | ;
This procedure reads the first doy of the scheduling period
and the ideal checker requirements (output from Phase |)
from tha file 'Sarvers.out’. ([t then deternines tha optimal
nuaber of checkers to schedule for each shift. These optimal

} shifts ora output to the file ‘Shifts.out’.

var

78




inputFile : text; {File varicbla for 'Servers.out’ }
OutputFile : text; {Fila variable for 'Shifts.out’ }
DayText : stringl10);
NuaHours : integer; { ® of hours store is open for current day )
NumsShifts : integer; { ® possibla daily shifts for current day }
tuebiars : integer; { ® possible daily shifts + ® deviation vars }
Num8 : integer; { ® possibia 8 hour shifts for current day )
Num? : integer; { ® possible ? hour shifts for current day }
Nus8 : integer; { ® possible 6 hour shifts for current day )
NumS : integer; { ® possible 5 hour shifts for current day }
Nusd : integer; { ® possible 4 hour shifts for current doy )
shiftF : ArcArray; { “From" functions for arcs (shifts) }
shiftT : ArcArray; { “To" functions for arcs (shifts) }
shift : fArcfirroy; { ® servers in each shift }
b : Nodefirray; { change in hourly requirements }
obj : ArcArray; { cost coafficients in objective function }
upper : Arcfirray; { upper bounds on shift variables }
shift_start : integer; { start time for the current shift }
shift_end : integer; { end time for the current shift )}
bagin

reset(inputFile, ‘Servers.out'); { Open Input File }
readin{inputFile, DayTaxt); { Read first day of scheduling period }
if DoyText = ‘Monday' then

FirstDay := Monday;
if DayText = 'Tussday' then

FirstDay := Tuesday;
if DoyText = * * then

FirstDay := tadnesday;
if DoyText = ‘Thursday' then

FirstDay := Thursday;

if DoyTaxt = 'Friday’ then
FirstDay := Friday;

if DoyText = ‘Saturday’ then
FirstDay := Saturday;

if DayText = "Sunday’ then
FirstDoy := Sunday;

{ Read chacker requiresents into k and total ® stages into NN }
n =0,
while not SeekEof(InputFile) do
begin
n:i=n+t;
if not SeekEoinCinputFila) then
read(inputFila,kinl)
sise
begin
readin;
read(inputFile,kinl>
end;
and;
ClosaCinputFila);
N := n;

rewite(OutputFile, 'Shifts.out');
if ExceedHours then
in
wr i taCOutputF i | @, * stk ) -
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o i taINCOULDULF | | @, * Sottutmtmtutistimprituiaiieieub gttt * ) -
wri ta(OutputFi e, 'HARNING HARNING HARN | NG *);
writain(OutputFile, ‘HARNING HARNING WARNING HARNING' );
writain(OutputFile);

writeln(OutputFile);

write(OutputFile,’ |deal checker requiresents for each howr ')
writein(OutputFile, ‘'exceed the maximum total hours.'?>;
wihln(mtputﬂlo);

w) te(OutputFile, ’ Suggest you reduce twgat cus toner oalting 'Y;
writeln(OutputFile, 'tine and run program again.');
writein(OutputFile?;

oritain(OutputFile);

writa(OutputFile, ‘HARNING HARN [NG HARNING 'y
writein(OutputFile, ‘HARNING WARN ING HARNING HARNING ' );
wrjteln(OutputFile);
wr i taCOutputF i |, ' SR ) -
wr i teinCOUtpULF i [ @, ' Stttk | )
writain(QutputFile);
writeln(OutputFile);

end;

Cwnr;tnw := FirstDay;

repeat

Nusours = (timelCurrentDayl.close - timelCurrantDayl.open) div 100;
if le-!ou‘s <> 0 then

NusHours := NuaHours + 1; { Add 1 hour for additional,
redundant node }

bli) := kln) = kin-1},
if i < NusHours then

n:=n+1;
end;
Num8 = NusHours ~ 8,
Num? s NusHours - 7;
MNumb = MusHours ~ 6;
Nuad = NuaHours ~ 3;
Numd := NumHours - 4;

for j = 1 to NueB do
begin
shift.Flj] = j;
shift.T{j] := j + 8;
obj(j] := 0; .




upper(j] := MAX_CHECKERS,

for j := (Mm8 + 1) to (Mm@ + Nua?) do
begin

shiftFlj] := | - Num8;

shlﬂ.ﬂjl = ) -n.e + 7

objlj] := 0

upper(j] = MAX.CHECKERS;

for j := (NusB + Num? + 1) to (NusB + Num? + Numb) do
begin

shifLFI[j] := | = (Num8 + Num?);

shiftT(j] = j - (NumB + Nm?) + 6;

objlj) := 0;

upperlj] :» MAX_CHECKERS;

and;

for j := (Num8 + Num? + HNum + 1) to
(Num8 + Num? + Numb + Num3) do

begin

shiftFl(j) = j - (Mum8 + Num? + Numb);
shift.T(j] = j = (Num8 + Hum? + Numb) + 3J;
objlj) := O;

upper{jl := MAX_CHECKERS;

end;
for J :-(M-frtn? Nund

begin
shift.Flj] := ] - (Num8 + Num
shiftT(j] := j - (Num8 + Num
objlj]l := O;

upper(j] := MAX_CHECKERS,

.
?

{ “From™ & "To" functions for deviation variabies }

= (Mum8 + Nm? + Rmb + Nun3 + Namd + 1);

for i := { to (NumHours-1) do

begin

shift_Flj) := j; { di-}
shiftTLjl =i + 1,

objl}l := 1,

upper(j] := MAX_CHECKERS;

shift Flj+1] = | + {; { di+ }
shiftTlj+1) ;= i,

objlj+tl := 1;

upper-(j+1] := MAX_CHECKERS;

Ji=j+2;

end;

HinCostF i ow(NusHours , Nusiar's, 0bj , shi ft, shi ft_F, shi ft_T,b,upper);

{ Write shifts to output file }
Uritcln(OutputFilc);
case Cwmmw

Monday : urit.ln(&atthilo, Monday '’ );
Tuesday : wltcln(mtputFllc,'Tuudag );
m : writein(OutputFile,’ Mnsdw );
Thursday : writeln(OutputFile, 'Thursdoy' ),
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Friday : wrltein(OutputFile, 'Friday');

Satwdw : uritoln(mtputFllo,'Satwdw );

Sunday : eritein<OutputFile, ‘Sunday’);
end; { case CurrentDay of }

case CurrentDay of
Monday : eritaln('Honday’'),;
Tuasday : writeind ' Tuesday');
Hadnesday : writein( lednesday’ ),
Thursday : writeln( Thursday');
Friday : writein('Friday’');
Saturday : writein( Saturday’ ),
Sunday : eritein('Sunday’');

end; { case CurrentDay of }

writeln(OutputFile, "’ 8 Hour Shifts: '),
for j := 1 to NumB do
begin
shift_start := time(CurrentDayl.open + ((j - 1) * 100);
shift_end := shlft_stc't + (KD)
ruu(mtwtﬁlo
writein(OutputFile, shift.sta-t 4,'~",shift_end:4,
' t,ehiftljl1:2);
end;

writein(OQutputFile, ' ? Hour Shifts: '),
for j := (Num8 + 1) to (NumB + Num?) do
begin
shift_stort := tinelCurrentDoyl.open +
(¢j - Mm@ - 1) * 100);
shiftand := shift_sta‘t + (700D,

o telOutputFile,"’ *;
witoln(OutputFHe shift_start:4, '~ shift.end:4,
LLehiftljl:2);
end;
writain(OutputFile, "’ 6 Hour Shifts: '),
for j := (Num8 + Mum?7 + 1) to (Num8 + Num? + Num) do
begin

shift.stort := tinlemtDa;l.opm +
() - Num8 - Num? - 1> * 100);
shift_end := shtft..start + (OGJ)
wltt(&atpuﬂ-‘ilo
woritein(OutputFile, shift...stcrt 4,'-' ,shift.end:4,
) ‘,ehiftljl:2),
end;

writein(OutputFile, " S Hour Shifts:');
for j ;= (Num8 + Num? + Num8 + 1) to
(Num8 + Num? + Numb + NuaS) do
begin
shift_start := tise(CurrentDayl.open +
((j = Num8 - Num? - Numb ~ 1) * 100);
shift.and := shift_stort + <soo>
o to(OutputFi le,' '3,
wihln(OutputFllc shift_stort: 4,'~' shift_and:4,
shiftl]1:2);
end;
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w i tain{OutputFile, " 4 Hour Shifts:');
for | := (NusB + Num? + Numb + NumS + 1) to

(Num8 + Num? + Numb + Nua3 + Num4) do
bagin
shift.start :» tiselCurrentDayl.open +
((J] -~ NunB - Num? - Numb - NumS -~ 1) * 100);
shift.and : shiﬂ..stwt + (400);
ritc(mtputFl le,’ *);
wittln(&:tmtﬂlc,d\ifutwt 4,'-',shift.and:4,
‘,shiftljl:2);
end;

end; { if NumHours <> O }

if CurrantDay = Sunday then
““meag := Monday
CurrentDay := succ(CurrentDay);

until <n >= NN);

CIosc(Outputhl.)

unt.ln( Number of stages = ' n);
; { procedure Phase |1 }

procedure Solve;

begin
Phaseal ;
Phaull
R proctdl.rt Sofva }

{
fzrocldrc SatHours;
This procedure is used to modify the store's hours of operation.

var
correct, BadResponsa : booleon;
day : DayOfleek;
responsa . chor;

begin
correct := faise;
while not correct do
begin

ClearScreen; { Cirser in I1BM Turbo }
GotoXv(1,7);
writeinC' Current hours of operation are:');
wrjtein;
writeln;
writein(' Doy Open Close’);
writeln;

for day := Monday to Sunday do




begin

case day of
Monday : write(’ Mondoy °');
Tussday : write’ Tuesday ‘>,
Hadnesday : write(’ Hednesday ' );
Thursday : write(’ Thursday ‘),
Friday : writeC’ Friday 'J;
Saturday : write(’ Saturday ‘);
Sunday : writeC’ Sunday ‘)
end; { cose }
if timelday).open = timeldayl.close then
writeing’ Closed')
eisa
writein(timaldoy].open:8, timeiday).close:8);
end; { day = Mon to Sun }
witein;
writeln;
BadResponse = true;
while BadResponse do
bagin
wite(’ Is this correct (Y/MN)?');
readin{responsa);
if (response = ‘'y’) or (response = 'Y') then
exit
alse
if (response = ‘'n') or (responsa = ‘N') then
BadResponse := false
eisa
writein(’'Plecse usa: ¥ for yes, N for no’);
end; { BadResponse }
ClearScreen;
witein;
witeln;
writein¢' Pliecse use 24~hour times for all entries.');
writain' Timas must be rounded to nearest hour.');
writeln;
writeinC’ For days whan store is closed, enter 0000');
writeinC’ for opening time and 0000 for closing
tine. ' );
writein;
for day := Monday to Sunday do
begin
case doy of
Honday : writelin(’ tonday ' );
Tuesday : writain(’ Tuesday‘ ?;
Wednesday : writein(’ Hednesday' );
: writaind' Thursday ‘),
Friday : writein(’ Friday';
Saturday : writelinc’ Saturday’ );
Sunday : writein(’ Sunday’ ?;
end;
writel’ Open (xxxx):'),;
readin(tinaidayl.open);
orjte(’ Close (xxxx):'),;
readin(lineldayl.close);
“.

end; { not correct }
end; { procedure SetHours )




{
;(roccdwc SethaxHour's;

This procedure prospts the user for the maximum aliowable
checker hours and stores it in the global variable Maxdiours.

}
begin
ClearScreen;
GotoXY( 1S, 12);
writa( Enter aaxisum allowable total checker hours:');
read in(Modiours );
end; { procedure SethaxHours }

{
;:rooodwe SetTarget;

This procedure proapts the user for tha desired customser
waiting tine oand stores it in the global variabla targat.

begin
ClearScreen;
GotoX¥(20, 12);
write('Enter desired customer waiting time: ‘);
readin{target);
end;

{
begin

Ini tHours; { Initialize tha default store hours }
Ini tTarget; { Initialize the default desired customer waiting time }
ini thaxHours; { Initialize tha default maxisum total checker hours }

done := false;
repeqa
Herulchoice); { Put up merw }




Date

27-May-87
27-May-87
27-May-87
27-May-87
27-May-87
27-May-87
27-May-87
27-May-87
27-May-87
27-May~-87
28-May-87
28—May-87
28-May~-87
28-May-87
28—-May-87
28-May-87
28-May-87
28-May-87
28-May-87
28-May-87
28—-May-87
28-May-87
29-May-87
29-May-87
29-May-87
29-May-87
29-May-87
29-May-87
29-May-87
29-May-87
29—-May-87
29-May-87
30-May-87
30-May-87
30~May-87
30-May-87
30-May-87
30-May-87
30-May-87

Day

Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday

88

w

Time

10
11
12
13
14
15
18
17
18

10
11
12
13
14
15
16
17
18
19
20

10
11
12
13
14
15
16
17
18

10
11
12
13
14

Appendix B: Customei Arrival Data

A(n)

240
312
347
329
326
323
319
384
337
131
158
263
311
270
300
292
309
369
337
275
201
57
62
153
170
227
258
291
316
322
278
114
166
290
345
354
400
350
363




30-May-87
30-May-87
30-May-87
31-May-87
31-May-87
31-May-87
31-May-87
31-May-87
31-May-87
31~May-87
31~May-87
2-Jun—-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
2-Jun-87
3-Jun-87
3-Jun-87
3-Jun-87
3-Jun-B87
3~Jun-87
3~Jun-87
3-Jun-87
3-Jun-87
3-Jun-87
3-Jun-87
4-Jun-87
4-Jun-87
4-Jun-87
4-Jun-87
4-Jun-87
4-Jun-87
4-Jun~87
4-Jun—-87
4-Jun-87
4-Jun—-87
4-Jun-87

Saturday
Saturday
Saturday
Sunday
Sunday
Sunday
Sunday
Sunday
Sunday
Sunday
Sunday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday

Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday

Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday

87

15
16
17

10
11
12
13
14
15
16

10
11
12
13
14
15
16
17
18
19

10
11
12
13
14
15
16
17
18

10
{1
12
13
14
15
16
17
18
19

332
278
114
274
395
334
307
257
318
156

174
281
332
323
339
329
357
394
317
209
26
118
171
222
185
185
259
305
306
320
77
144
300
277
308
230
260
314
383
330
219
184




4-Jun-87 Thursday 20 52
5-Jun-87 Friday 9 157
5~Jun-87 Friday 10 263
5-Jun-87 Friday 11 317
5-Jun-87 Friday 12 286
5-Jun-87 Friday 13 287
5-Jun-87 Friday 14 304
5-Jun-87 Friday 15 318
5-Jun-87 Friday 16 275
5-Jun-87 Friday 17 286
5-Jun-87 Friday 18 98
6-Jun—-87 Saturday 8 120
6-Jun-87 Saturday 9 235
6-Jun-87 Saturday 10 281
6-Jun-87 Saturday 11 345
6-Jun-87 Saturday 12 340
6-Jun-87 Saturday 13 334
6-Jun-87 Saturday 14 338
6-Jun-87 Saturday 15 308
8-Jun-87 Saturday 18 315
6-Jun-87 Saturday 17 129
7-Jun-87 Sunday g 1

7-Jun—-87 Sunday 10 244
7-Jun-87 Sunday 11 295
7-Jun-87 Sunday 12 280
7~Jun-87 Sunday 13 312
7-Jun-87 Sunday 14 353
7-Jun-87 Sunday 15 333
7~-Jun-87 Sunday 16 124
9-Jun-87 Tuesday g 197
9-Jun-87 Tuesday 10 295
9-Jun-87 Tuesday 11 303
9-Jun-87 Tuesday 12 304
9-Jun-87 Tuesday 13 316
9-Jun-87 Tuesday 14 278
9-Jun-87 Tuesday 15 306
g-Jun-87 Tuesday 16 352
9-Jun-87 Tuesday 17 308
9-Jun-87 Tuesday 18 186
9-Jun-87 Tuesday 19 53
10-Jun-87 Wednesday 8 119
10~-Jun-87 Wednesday 10 234
10-Jun-87 Wednesday 11 277
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R i

10-Jun-87
10-Jun-87
10-Jun-87
10-Jun-87
10-Jun-87
10-Jun-87
10-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
11-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
12-Jun-87
13-Jun-87
13-Jun-§7
13-Jun-87
13-Jun-87
13-Jun-87
13-Jun-87
13-Jun-87
13-Jun-87
13-Jun-87
13-Jun-87
14-Jun-87
14-Jun-87
14-Jun-87
14-Jun-87

Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Thursday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Friday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Saturday
Sunday
Sunday
Sunday
Sunday

12
13
14
15
16
17
18

10
11
12
13
14
15
16
17
18
18
20

10
11
12
13
14
15
16
17
18

10
11
12
13
14
15
16
17
)

10
11
12

249
238
275
271
259
246

73
188
242
184
207
284
298
302
316
213
193

58
173
235
292
278
255
317
307
301
310

g7

75
189
313
328
363
361
327
366
355
145

68
236
299
339




14-Jun-87
14-Jun-87
14-Jun-87
14-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87
18-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87
16-Jun-87

Sunday
Sunday
Sunday
Sunday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday

90

13
14
15
16

10
11
12
13
14
15
18
17
18
19

326
336
343
159
200
322
300
327
278
302
371
334
313
199
59
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Appendix C: SLAM Code and Output

Case 1: 6 Jun 87

GEN,CAPT FREY,D 6 JUN 87, 11/16/88, 1,¥,N,Y/¥,N,v/S,72;

LINITS, 1, 4,500

NETWORK
RESOURCE /CHECKERS(9), 1;

CREATE, XX(1),, 1;
ACTIVITY, , TNOW . LE . 600, OK;
RETIVITY, | THOU.GT 800, KIL;

KiL

0K assueu ATRIB(2)=S. 156;

RSSIGN, ATRIB(3>=ATRIBC 1 #ATRIB(2);
ASSIGN, RTRIB(4 X=NHQ( 1);
AHAITC 1), CHECKERS/1;
ACTIVITY/1,ATRIB(2); SERVICE TIME
FREE, CHECKERS/1;

EVENT, 1;

COLCT, INTC1), TIME IN SYSTEN;
COLCT, INTC3).TIME IN QUELE;

TERM;

+ spsapmaiauageaisgeaieapeaeieaicarafeaieafesieajrsiesieaiesiajeapraieniraeaieapeaqeafeaisapesienis
CREATE, 60,60, 11;
EVENT, 2;
ACTIVITY, , TNOW. GE.
ACTIVITY, , TNOW.GE .
ACTIVITY, . THOW. GE.
mnww”mwse
ACTIVITY,  TNOW.
ACTIVITY, , THOM.
ACTIVITY,  TNOW.
ACTIVITY,  TNOW.
ACTIVITY,  THOW.
ACTIVITY,  TNOW.
ACTIVITY, , TNOW.GE.

P2 RSSIGN,XX(1>%60.0/235.0;
ALTER, CHECKERS /+11;
TERMINATE;

P3  RSSIGN,XX(1)m60.0/281.0;

ALTER, CHECKERS /+3; o
TERN INATE;

P4 RSSIGN,XX(1)60.0/345.0;
ALTER, CHECKERS /+7;
TERMINATE;

PS  ASSIGN, XX(1)m60.0/340.0;
ALTER, CHECKERS /-1; o
TERMIMATE ; :

P6  ASSION,XX(1)=60.0/334.0;
TERMINATE ;

P?  RSSIGN,XX(1)=60.0/338.0;
ALTER, CHECKERS/+1;

TERM INATE; ,

P8 ASSIGN,XX(1)=60.0/306.0; |
ALTER, CHECKERS/-S;
TERMINATE ;

r
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P ASSIGN, XX(1)=60.0/313.0;
ALTER, CHECKERS /+3;
TERMINATE ;

P10 ASSION,XX¢1>=60.0/128.0,
ALTER, CHECKERS /- 13;
TERMINATE ;

P11 ALTER,CHECKERS/-12;
TERMINATE;

P12  ASSIGN, XX< 1>=100000;
TERMINATE ;

ENDNETUORK ;

INTLC, XX(1)=0.5, XX(2 =0, XX(3 =0, XX (4 y=0, XX(5)=0, XX(6)=0;

INIT,0.0,800.0,N;

FiIN;
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SLAN |}t SUMNHARY REPORT

SIMULATION PROJECT D 6 JUN 87 By CAPT FREY

DATE 11/16/1988 RUN NUHBER 1 OF 1

CURRENT TIME  0.B8000E+03
STATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

**STATISTICS FOR UARIABLES BASED ON OBSERVAT |ON%+

MERN STANDARD COEFF. OF MINIMUM  MRXIMUM NO.OF
UALUE DEVIATION VARIATION UALUE UALUE o8s

TIME IN SYSTEM 0.787E+01 0.111E+01 0. 141E+00 0.516E+01 0. 124E+02 2743
TIME IN QUELE 0.271E+01 0. 111E+01 0.409E+00 0.000E+00 0.722E+01 2743

**FILE STRTISTICEw*

FILE AVERARGE STANDARD MAXIMUM CURRENT AUVERAGE

NUWBER LABEL /TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME
1 ARIT 9.304 7.508 28 1] 2.714
2 CALENDAR 19.504 12. 193 33 1 0.931

*HREGULAR ACTIVITY STATISTICSH*

ACTIVITY RVERAGE STANDARD MAXIMUM CURRENT  ENTITY
INDEX /LABEL UTILIZARTION DEVIATION UTIL UTIL COUNT
1 SERVICE TIME 17.6787 11.9310 30 0 2743

**RESOURCE STATISTICS**

RESOURCE RESOURCE CURRENT AUVERAGE STANDARD  MAXIMUM CURRENT
NUMBER LABEL CAPRCITY  UTIL DEVIATION UTIL utiL

1 CHECKERS 1 17.68 11.931 30 0
RESOURCE RESOURCE CURRENT RVERAGE MINEMUN MAX | MUN
NUMBER LABEL AVAILABLE AVAILABLE AVAILABLE AUAILABLE

1 CHECKERS 1 0.2713 -15 9

a3
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Case 2: 8 Jun 87

SLAMN 11 SUMMARY REPORT
SIMULATION PROJECT Con Lamda 1 BY CAPT FREY
DATE 11/16/1988 ARUNNUMBER SO OF SO

CURRENT TIME 0.8000E+03
STATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

**STATISTICS FOR UARIABLES BASED ON OBSERUAT | DN

MEAN STANDARD COEFF. OF MINIMUM  PMAXIMUM NO.OF
VALUE DEVIATION VARIATION  UALUE URLUE 0B8s

TIME IN SYSTEM O.117E+02 0. 102E4+02 0.874E+00 0. ISSE+01 0.230E+403 etk
TIME IN QUEVE 0.633E+01 0. 100E+02 0. 1S3E+01 0.000E+00 0.227E+03 e+

**F|LE STATISTICS*»

FILE AVERAGE STANDARD MAXIMUM CURRENT AVERAGE

NOMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME
1 ANAILT 12.801 12.971 52 0 3.704
2 CALENDAR 19. 159 11.770 33 1 0.889

*HREGULAR ACTIVITY STATISTICS**

ACTIVITY RVERAGE STANDARD MAXIMUM CURRENT  ENTITY
INDEX /LABEL UTILIZRTION DEVIATION utiL utiL COUNT
1 SERVICE TIME 17.6153 11.6713 30 0 2721

**RESOURCE STATISTICS**

RESOURCE RESOURCE CURRENT AUVERAGE STANDARD MAXIMUM CURRENT
MUMBER LABEL CAPRCITY UTIL DEVIATION UTIL utiL

1 CHECKERS 1 17.62 11.671 30 0

RESOURCE RESOURCE CURRENT AVERAGE MINIMUN MAX 1 MUM
NUMBER LABEL AVAILABLE AUAILABLE AURILABLE AVAILABLE

1 CHECKERS 1 1.4318 -13 18

94




CURRENT TIME  0.8000E+03
STRTISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

®L |LE STATISTICS*™

**REGULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAX | UM
INDEX /LABEL UTILIZRTION OEVIATION utiL
1 SERVICE TIME 17.6009 11.6214 30

**RESOURCE STATISTICSw™

1 CHECKERS 1 17.60 11.621

RESOURCE RESOURCE CURRENT AVERAGE MINIMUR

Case 3: 6 Jun 87

SLANM (| SUMMARY REPORT
SIMAATION PROJECT Con Lamda 1 BY CAPT FREY
DATE 11/16/1988 RUN NUIBER SO OF SO

*=*STATISTICS FOR VARIABLES BASED ON OBSERVAT | ONw*

MEAN STANDARD COEFF. OF MIMIMUM  MAXIMUM NO.OF
VALUE DEVIATION VARIATION  VALUE

VALLE  0BS

TIME IN SYSTEM 0.131E+02 0. 1238402 0.940E+00 0. 159E+01 0.260E+03 *ww*
TIME IN QUEVE 0.798E+01 0. 1226402 0. 153E+01 0.000E+Q0 O.2S0E+03 wwes

FILE AVERAGE STANDARD  MAXIMUM CURRENT RUERRGE

NUMMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WRIT TIME
{ ANAIT 20.783 21.055 83 0 6.014
2 CALENDAR 19.519 12.029 a3 i 0.8%

CURRENT  ENTITY
UTiL COUNT
0 2762

RESOURCE RESOURCE CURRENT AUVERAGE STANDARD MAXIMUM CURRENT
NUMBER LABEL CAPRCITY  UTIL DEVIATION UTIL utiL

30 0

MAX MU

NUMBER LABEL AURILABLE AVAILABLE AUAILABLE AUAILABLE

1 CHECKERS 1 1.2559 =13

95
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Case 4: 6 Jun 87

SLAM 11l SUHNNARY REPORT
SIMUWLATION PROJECT Con Lamda 1 8Y CAPT FREY
DATE 11/16/1988 RUN NOMBER 50 OF 30

CURRENT TIME 0.B8000E+03
STATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

**STATISTICS FOR URRIABLES BASED ON OBSERVAT | Oie*

HEAN STANDARD COEFF. OF HMINIMUM  MAXIMUM NO.OF
UARLUE DEVIATION UARIATION  UALUE UALUE 08s

TIME IN SYSTEM 0.1726+02 0. 178E+02 0. 103E+01 0. ISSE+01 0.285E+03 #oww
TIME IN QUEUE  0.121E+02 0. 177E+02 0. 147E+01 0.000E+00 0.282E+03 -k

**E|LE STATISTICS®*

FiLE AVERAGE STANDARD  MAXIMUM CURRENT RVERAGE
NUMBER LABEL /TYPE LENGTH DEVIATION LENGTH LENGTH UWRIT TIME

1 AUARIT 42.949 25.762 92 ? 12.554
2 CALENDAR 19.729 11.704 33 2 0.914

**REGULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT ENTITY
INDEX /LABEL UTILIZATION DEVIATION utiL UtiL COUNT
1 SERVICE TIME 17.5882 11.5359 30 1 2?29

*RESOURCE STATISTICS™*

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAXIMUM CURRENT
NUMBER LABEL CAPRCITY UTIL DEVIATION UTIL UTiL

1 CHECKERS 1 17.59 11.539 30 1

RESOURCE RESOURCE CURRENT AVERAGE MINIMUN MAX 1 MU
NUMBER LABEL AUAILABLE AURILABLE AURILABLE AUAILABLE

1 CHECKERS 0 0.9292 -9 21
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Case 1: 11 Jun 87

SLAK |1 SUNMARY BREPORT
SIMULATION PROJECT D 11 Ju 87 BY CAPT FREY
DATE 11/16/1988 RUN NUMBER t OF 1

CURRENT TIME  0.B8000E+03
STRATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

*=*STATISTICS FOR URRIABLES BASED ON OBSERUAT | ON**

MERN STANDARD COEFF. OF HMINIMUM  MAXIMUM NO.OF
UALUE DEVIATION VARIATION  VALUE UALUE 08s

TIME IN SYSTEM 0.876E+01 0. 1735E+01 0. 199E+00 0.516E+01 0. 167E+02 2558
TIME IN QUEUE 0.301E+01 0. 173E+01 0.484E+00 0.000E+00 0. 113E+02 2358

**F|LE STATISTICS™*

FILE AVERAGE STANDARD  MAXIMUM CURRENT AVERAGE

NUMBER LABEL /TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME
1 ANALT 11.533 7.85°? 33 0 3.608
2 CALENDAR 18.386 8.817 30 1 0.955

*HREGULAR ACTIUITY STATISTICS™*

ACTIVITY AVERAGE STANDARD MAXIMUN CURRENT  ENTITY
INDEX /LABEL UTILIZATION DEVIATION uTiL UTiL COUNT
1 SERVICE TIME 16.4863 8.6246 27 0 2558

*+RESOURCE STRTISTICS**

RESOURCE RESOURCE CURRENT AUERAGE STANDARD  MAXIMUM CURRENT
NUMBER LABEL CAPRCITY UTIL DEVIATION  UTIL UTIL

1 CHECKERS 1 16.49 8.625 2? o
RESOURCE RESOURCE CURRENT AVERAGE MINITUM RAX UM
NUMBER LABEL AUAILABLE AUAILABLE AUAILARBLE AUAILABLE

1 CHECKERS 1 0. 1887 -11 S
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' Case 2. 11 Jun 87

SLAKN 1| SUHMHMARY REPORT
SIMULATION PROJECT Con Lomda 2 BY CAPT FREY
DATE 11/16/1968 AUN MRMBER S0 OF 350

CURRENT TIME 0.8000E+03
STRTISTICAL ARRAYS CLERRED AT TIME 0.0000E+00

. *»STATISTICS FOR VARIABLES BASED ON OBSERUAT | ONw*

MERN STANDARD COEFF. OF MINIMUM  MAXIMUM NO.OF
UALUE DEVIATION VARIATION  UVALLE UALUE 08s

TIME IN SYSTEM O.121E+02 0.786E+01 0.0649E+00 0. 15QE+01 0. 154E+03 =
TIME IN QUEUE 0.690E+01 0.739E+01 0. 109E+01 0.000E+00 0.1S0E+03 **»=

= ILE STATISTICS**

FILE AUERAGE STANDARD MAXIMUM CURRENT RUERAGE

NUBER LABEL /TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TiME
1 RHAIT 5.8356 5.943 2 0 1.858
2 CALENDAR 18.051 8.4352 30 1 0.951

**REGULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT  ENTITY
| NDEX /LABEL UTILIZATION DEVIATION utiL utiL COUNT
1 SERVICE TIME 16.3874 8.4792 27 0 2322

**RESOURCE STATISTICS™*

RESOURCE RESOURCE CURRENT AVERAGE STRANDARD  MAXIMUM CURRENT
NUMBER LABEL CAPRCITY UTIL DEVIATION  UTIL UTIL

1 CHECKERS 1 16.39 8.4 re o

RESOURCE RESOURCE CURRENT RAVERAGE MINIMUM MAX | MU
NUMBER LABEL AVAILABLE AUAILABLE AVAILABLE AUAILABLE

1 CHECKERS 1 0.4144 -1 16




Case 3: 11 Jun 87 3

SLAM |1 SUHNMNARY REPORT
SIMULATION PROJECT Con Lamda 2 BY CAPT FREY
DATE 11/16/1988 ARUN NOMBER SO OF SO

CURRENT TIME 0.8000E+03
STATISTICAL ARRRYS CLERRED AT TIME 0.0000E+00

**+3TATISTICS FOR UARIABLES BASED ON OBSERUAT | DN+

MERAN STANDARD COEFF. OF HMINIMUM  MAXIMUM NO.OF
UALUE DEVIATION UARIATION UALUE VALUE 08S

TIME IN SYSTEM 0.139E+02 0. 101E+02 0.726E+00 0. 1S6E+01 0. 162E+03 www»
TIME IN QUEUE 0.872E+01 0.986E+01 0.113E+01 0.000E+00 0. I1S7E+03 we»=

*F |LE STRTIST|CS»*

FILE AVERAGE STANDARD  MAXIMUM CURRENT AVERAGE -
MUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH HWAIT TIiME :
1 AHRIT 16.298 14.204 63 0 S.101
2 CALENDAR 18.463 8.482 30 1 0.960

*HREGULAR ACTIVITY STATISTICS*

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT  ENTITY
I NDEX /LABEL UTILIZATION DEVIATION UTiL utiL counT ]
1 SERVICE TIME 16.4270 8.4610 2?7 0 2356 q‘

*+RESOURCE STATISTICS**
RESOURCE RESOURCE CURRENT ARUERAGE STANDARD  MAXIMUM CURRENT

NUMBER LABEL CAPRCITY  UTIL DEVIATION UTIL UtiL q
1 CHECKERS 1 16.43 8.461 27 0
RESOURCE RESOURCE CURRENT AVERAGE MiINIM MAX | MU of

NUMBER LRBEL AUAILABLE AVAILABLE AUAILABLE AURILABLE
1 CHECKERS i 0.3357 -1 15




Case 4: 11 Jun 87

SLAN ] SUMMARY RBREPORT
SIMULATION PROJECT Con Lamda 2 BY CAPT FREY
DATE 11/16/1988 RUN MMBER SO OF SO

CURRENT TIME  0.8S000E+03
STATISTICAL ARRAYS CLERRED AT TIME 0.000CE+00

=+STATISTICS FOR URRIABLES BASED ON OBSERVAT | ON%*

MERAN STANDARD COEFF. OF MINIMUM  MAXIMUM NG.OF
VALUE DEVIATION VARIATION  UALUE VALLE 0BS

TIME IN SYSTEM O0.163€+02 0. 137E+02 0.838E+00 0. 1S6E+01 0. 170E+03 en
TIME IN QUEUE 0. 111E+02 0. 135E+02 0. 121E+01 C.000E+00 0. 166E+03 >

**F|LE STATISTICS**

FILE AVERAGE STANDARD  MAXIMUM CURRENT AVERRGE

MABER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME
1 AUAIT 10.989 12.032 54 0 3.579
2 CALENDAR 17.626 8.451 30 1 0.964

*REGULAR ACTIVITY STATISTICS**

ACTIVITY RUERAGE STANDARD MAXIMUM CURRENT  ENTITY
INDEX /LABEL UTILIZATION DEVIATION UTIL utiL COUNT
1 SERVICE TIME 16.2872 8.4402 2?7 0 2456

*#RESOURCE STATIST|CS%w

RESOURCE RESOURCE CURRENT AVERAGE STANDARD  MAXIMUM CURRENT
NUMBER LABEL CAPACITY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 16.29 8.440 22 0
* RESOURCE RESOURCE CURRENT RAVERAGE HINTTUR MAX | HUN
NABER LABEL AVAILABLE RUAILABLE AVAILABLE  AVAILABLE
1 CHECKERS 1 0.4695 ~-11 1?
' 100




Bibliography
Baker, Kenneth R. “Workforce Allocation in Cyclical Scheduling Problems:
A Survey,” Operationa] Research Quarterly, 27: 155-167 (1876).

Bartholdi, John J. A Guaranteed-Accuracy Round-off Algorithm for

Cyclic Scheduling and Set Covering,” Operatijons Research, 28: 501-
510 (May-June 1981).

Bellman, Richard. Dynamic Programming. Princeton, NJ: Princeton
University Press, 1957.

Denardo, Eric V. i e ]
Englewood Cliffs, NJ: Prentice—Han Inc., 1982

Fisher, Marshall L. “The Lagrangian Relaxation Method for Solving

Integer Programming Problems,” Management Science, 27: 1-18
(January 1981).

Fulkerson, D. R. “An Out-of-Kilter Method for Minimal-Cost Flow

Problems,”
Mathematics, 9: 18-27 (1961).
Hillier, Frederick S. and Gerald J. Lieberman. Introduction to Operations

Research (Fourth Edition). Oakland, CA: Holden-Day, Inc., 1986.

Kleinrock, Leonard. eu te: Volu
New York: John Wiley and Sons, Inc., 1976.

Koelling, C. Patrick and James E. Bailey. “A Multiple Criteria Decision
Aid for Personnel Scheduling,” [IE Transactions, 16: 299-307
(December 1984).

Kwan, Stephen K. , Mark M. Davis, and Allen G. Greenwood. “A
Simulation Model for Determining Variable Worker Requirements in
a Service Operation with Time-Dependent Customer Demand,”

Queueing Systems, 3: 265-276 (1988).

Larson, Robert E. and John L. Casti. Principles of Dynamic Programming,
Part II: Advanced Theory and Applications. New York: Marcel
Dekker, Inc., 1982.

Magazine, M. J. “Optimal Control of Multi-channel Service Systems,”
Naval Research Logistics Quartly, 18: 177-183 (1971).

101

d L

Al

u. .

A

S X




Moulder, Capt Roger D.

Store Simulation Mode]. MS thesis, AFIT/GOR/ENS/87D-11.
School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December, 1987.

Polk, Lt Col Stan. Telephone interview. HQ AFCOMS, Kelly AFB TX, 26
May 1988,

Segal, M. “The Operator-Scheduling Problem: A Network-Flow
Approach,” Qperations Research, 22: 808-823 (July-August 1974).

Veinott, Arthur F. and Harvey M. Wagner. “Optimal Capacity
Scheduling,” Operations Research, 10: 518-532 (July-August 1962).

102

¥
o

la

»

A




VITA

Captain Thormas J. Frey (Y

Pennsylvania, in 1980 -attended Pennsylvania State University, from
which he received the degree of Bachelor of Science in Electrical
Engineering in May 1984. After graduation, he attended Officer Training
School, and he received a commission in the USAF in August 1984. He
was an electronic countermeasures signal analyst at the Foreign Technology
Division at Wright-Patterson AFB froin September 1984 until May 1987, at
which time he entered the School of Engineering, Air Force Institute of

Technology.

.

103



e

UNCLASSIFIED
| ] A

REPORT DOCUMENTATION PAGE

Form Approved
OMB8 No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

B
1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEUULE

Approved for public release
distribution unlimited.

T =T TSt T T T S —y—s
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GOR/ENS/88D-7

T T ey
S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
{if applicable)

AFIT/ENS

I'6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

v S —
7b. ADDRESS (City, State, and ZIP Code)

8b. OFFICE SYMBOL
()f applicable)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

AF Commissary Service

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADORESS (City, State, and ZIP Code)

Kelly AFB TX 78241-5000

10. SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

PROGRAM PROJECT
NO. NO ACCESSION NO.

ELEMENT NO.

E——— N
11. TITLE (Inciude Security Classification)
See Box 19

12. PERSONAL AUTHOR(S)
Thomas J. Frey, Captain, USAF

i
13a. TYPE OF REPORT 13b. TIME COVERED
MS Thesis FROM TO

15. PAGE COUNT
111

14. DATE OF REPORT (Year, Month, Day)
1988 December

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP
12 04

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Queueing Theory, Scheduling, Dynamic
Programming, Network Flows

Title:

Thesis Advisor:

[19. ABSTRACT (Continue on reverse if necessary and identify by block number)
OPTIMAL SERVER SCHEDULING TO MAINTAIN
CONSTANT CUSTOMER WAITING TIMES

Joseph Litko, Major, USAF
Assistant Professor of Operations Research

.\’."'- .\’g 3
” -
- s
SR & x5
Q\: PO r'(y g
R SgE A
ok (ORIENe]
= pA

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
B uncLassiFiepunuMTED  [J SAME AS RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL

[ omic USERS
*

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

Joseph Litko, Major, USAF

(513)255-3362

AFIT/ENS

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED




UNCLASSIFIED

The purpose of this research was to develop an analytical model that
would optimally schedule commissary checkers so that the expected
customer waiting-time would remain relatively constant throughout the
scheduling period. A two—-phase model was developed to solve the
problem. The first phase of the model used dynamic programming to find
the optimal number of checkers required throughout each day to meet the
desired customer waiting-time goal. Since checkers cannot be scheduled to
work arbitrarily short tours of duty, a second phase was needed in the
model to find the optimal number of checkers to assign to allowable shifts
in order to meet the optimal requirements determined in phase one.

A simulation was developed to validate the checker scheduling
model. [t was found that the scheduling model produced acceptable results
until the last few periods of the day. Additional servers needed to be
added heuristically near the end of each day to obtain the desired customer
waiting times.

Several extensions of this work are possible. First, an improved
approximation for customer line lengths could be used at the end of each
day. Use of such an approximation could eliminate the need for heuristic
rules in scheduling servers during the last few periods of each day.

Second, the scheduling algorithm that was developed did not account for
checker lunch breaks. Accounting for lunch breaks complicates the
problem, but two different approaches were suggested for a solution
allowing for checker lunch breaks. Finally, a third phase could be added to
the model that would allow assignment of actual workers to the optimal
shifts determined in the second phase.

UNCLASSIFIED




